論文の概要: Innate-Values-driven Reinforcement Learning based Cooperative Multi-Agent Cognitive Modeling
- arxiv url: http://arxiv.org/abs/2401.05572v2
- Date: Mon, 09 Jun 2025 19:52:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 22:10:06.84835
- Title: Innate-Values-driven Reinforcement Learning based Cooperative Multi-Agent Cognitive Modeling
- Title(参考訳): 協調的多エージェント認知モデルに基づく固有値駆動強化学習
- Authors: Qin Yang,
- Abstract要約: 本稿では,個別の選好角度から固有値強化学習アーキテクチャを提案する。
異なるStarCraft Multi-Agent Challenge設定でMulti-AgentL Actor-Critic Modelを検証した。
- 参考スコア(独自算出の注目度): 1.8220718426493654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multi-agent systems (MAS), the dynamic interaction among multiple decision-makers is driven by their innate values, affecting the environment's state, and can cause specific behavioral patterns to emerge. On the other hand, innate values in cognitive modeling reflect individual interests and preferences for specific tasks and drive them to develop diverse skills and plans, satisfying their various needs and achieving common goals in cooperation. Therefore, building the awareness of AI agents to balance the group utilities and system costs and meet group members' needs in their cooperation is a crucial problem for individuals learning to support their community and even integrate into human society in the long term. However, the current MAS reinforcement learning domain lacks a general intrinsic model to describe agents' dynamic motivation for decision-making and learning from an individual needs perspective in their cooperation. To address the gap, this paper proposes a general MAS innate-values reinforcement learning (IVRL) architecture from the individual preferences angle. We tested the Multi-Agent IVRL Actor-Critic Model in different StarCraft Multi-Agent Challenge (SMAC) settings, which demonstrated its potential to organize the group's behaviours to achieve better performance.
- Abstract(参考訳): マルチエージェントシステム(MAS)では、複数の意思決定者間の動的相互作用は、その固有の値によって駆動され、環境の状態に影響を与え、特定の行動パターンが出現する可能性がある。
一方、認知モデリングの本質的な価値は、特定のタスクに対する個人の関心や嗜好を反映し、様々なスキルやプランを発達させ、それらのニーズを満足させ、協力において共通の目標を達成する。
したがって、グループユーティリティとシステムコストのバランスを保ち、グループメンバーのニーズを満たすためにAIエージェントの意識を構築することは、コミュニティを支援し、長期的には人間社会に統合することを学ぶ個人にとって重要な問題である。
しかし、現在のMAS強化学習領域では、エージェントの意思決定と学習に対する動的な動機付けを個人のニーズの観点から記述する本質的なモデルが欠落している。
このギャップに対処するため,本稿では,個別の選好角度からのMAS固有値強化学習(IVRL)アーキテクチャを提案する。
我々は、異なるStarCraft Multi-Agent Challenge (SMAC) 設定でMulti-Agent IVRL Actor-Critic Modelをテストし、パフォーマンス向上のためにグループの振る舞いを整理する可能性を実証した。
関連論文リスト
- Beyond Brainstorming: What Drives High-Quality Scientific Ideas? Lessons from Multi-Agent Collaboration [59.41889496960302]
本稿では,構造化マルチエージェントの議論が独創的思考を超えうるかどうかを考察する。
研究提案を作成するための協調型マルチエージェントフレームワークを提案する。
エージェントベースのスコアリングと,新規性,戦略的ビジョン,統合深度といった領域にわたるヒューマンレビューを備えた包括的プロトコルを採用している。
論文 参考訳(メタデータ) (2025-08-06T15:59:18Z) - Collaborative Learning in Agentic Systems: A Collective AI is Greater Than the Sum of Its Parts [12.471774408499817]
集合学習(MOSAIC)におけるモジュール共有と構成の導入
MOSAICはエージェントアルゴリズムであり、複数のエージェントが独立して異なるタスクを解くことができる。
一連のRLベンチマークの結果から,MOSAICは孤立学習者よりもサンプル効率が高いことが示された。
論文 参考訳(メタデータ) (2025-06-05T20:38:11Z) - Rationality based Innate-Values-driven Reinforcement Learning [1.8220718426493654]
本来の価値はエージェントの本質的なモチベーションを表しており、それはエージェントの本来の関心や目標を追求する好みを反映している。
これはAIエージェントの固有値駆動(IV)行動を記述するための優れたモデルである。
本稿では,階層型強化学習モデルを提案する。
論文 参考訳(メタデータ) (2024-11-14T03:28:02Z) - Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
MARL(Multi-agent Reinforcement Learning)は、シーケンシャルな意思決定と制御タスクの鍵となるフレームワークである。
これらのシステムを現実のシナリオに展開するには、分散トレーニング、多様なエージェントセット、そして頻繁な環境報酬信号から学ぶ必要がある。
我々は,新しいグラフニューラルネットワーク(GNN)に基づく本質的なモチベーションを利用して,異種エージェントポリシーの学習を容易にするCoHetアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-12T21:38:40Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - Organizing a Society of Language Models: Structures and Mechanisms for Enhanced Collective Intelligence [0.0]
本稿では,大規模言語モデルからコミュニティ構造への変換手法を提案する。
協力型AIシステムに特有のメリットと課題を提示する,階層的,フラット,ダイナミック,フェデレートされたさまざまな組織モデルについて検討する。
このようなコミュニティの実装は、AIにおける問題解決能力を改善するための大きな約束を持っている。
論文 参考訳(メタデータ) (2024-05-06T20:15:45Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
本稿では,エージェントの行動が他のエージェントの行動と一致しているかどうかを学習するための新しいアプローチを提案する。
マルチエージェント粒子, Google Research Football および StarCraft II Micromanagement を含む複数の環境における DCIR の評価を行った。
論文 参考訳(メタデータ) (2023-12-10T06:03:57Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - Learning in Cooperative Multiagent Systems Using Cognitive and Machine
Models [1.0742675209112622]
マルチエージェントシステム(MAS)は、人間との協調と協調を必要とする多くのアプリケーションにとって重要である。
一つの大きな課題は、動的環境における独立したエージェントの同時学習と相互作用である。
我々はMulti-Agent IBLモデル(MAIBL)の3つの変種を提案する。
我々は,MAIBLモデルが学習速度を向上し,動的CMOTPタスクにおいて,現在のMADRLモデルと比較して様々な報酬設定でコーディネートを達成できることを実証した。
論文 参考訳(メタデータ) (2023-08-18T00:39:06Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
協調型MARLにおける動的サブタスク代入(LDSA)を学習するための新しいフレームワークを提案する。
エージェントを異なるサブタスクに合理的に割り当てるために,能力に基づくサブタスク選択戦略を提案する。
LDSAは、より優れたコラボレーションのために、合理的で効果的なサブタスクの割り当てを学習していることを示す。
論文 参考訳(メタデータ) (2022-05-05T10:46:16Z) - Modeling Bounded Rationality in Multi-Agent Simulations Using Rationally
Inattentive Reinforcement Learning [85.86440477005523]
我々は、人間不合理性の確立されたモデルであるRational Inattention(RI)モデルを含む、より人間的なRLエージェントについて検討する。
RIRLは、相互情報を用いた認知情報処理のコストをモデル化する。
我々は、RIRLを用いることで、合理的な仮定の下で発見されたものと異なる、新しい平衡挙動の豊富なスペクトルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-18T20:54:00Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Reward Machines for Cooperative Multi-Agent Reinforcement Learning [30.84689303706561]
協調型マルチエージェント強化学習において、エージェントの集合は共通の目標を達成するために共有環境で対話することを学ぶ。
本稿では、報酬関数の構造化表現として使われる単純な機械である報酬機械(RM)を用いて、チームのタスクを符号化する手法を提案する。
マルチエージェント設定におけるRMの新たな解釈は、要求されるチームメイト相互依存性を明示的に符号化し、チームレベルのタスクを個々のエージェントのサブタスクに分解することを可能にする。
論文 参考訳(メタデータ) (2020-07-03T23:08:14Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
我々は、学習インセンティブ関数を用いて、RLエージェントに他のエージェントに直接報酬を与える能力を持たせる方法を示す。
このようなエージェントは、一般的なマルコフゲームにおいて、標準のRLと対戦型エージェントを著しく上回っている。
私たちの仕事は、マルチエージェントの未来において共通の善を確実にする道のりに沿って、より多くの機会と課題を指しています。
論文 参考訳(メタデータ) (2020-06-10T20:12:38Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
実世界のマルチエージェント設定は、エージェントや非エージェントエンティティのタイプや量が異なるタスクを伴うことが多い。
我々の方法は、これらの共通点を活用することを目的としており、「観察対象のランダムに選択されたサブグループのみを考えるとき、各エージェントが期待する効用は何か?」という問いを投げかける。
論文 参考訳(メタデータ) (2020-06-07T18:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。