論文の概要: Designing Heterogeneous LLM Agents for Financial Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2401.05799v1
- Date: Thu, 11 Jan 2024 10:06:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-12 15:13:54.316978
- Title: Designing Heterogeneous LLM Agents for Financial Sentiment Analysis
- Title(参考訳): 金融感情分析のための異種llmエージェントの設計
- Authors: Frank Xing
- Abstract要約: 本研究では、金融感情分析(FSA)における大規模言語モデル(LLM)の有効性について検討する。
ミンスキーの心と感情の理論を取り入れたヘテロジニアスLSMエージェントを用いた設計枠組みが提案されている。
このフレームワークは、FSAのエラーの種類や、集約されたエージェントの議論の理由に関する事前のドメイン知識を使用して、特殊なエージェントをインスタンス化する。
- 参考スコア(独自算出の注目度): 0.8158530638728501
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) have drastically changed the possible ways to
design intelligent systems, shifting the focuses from massive data acquisition
and new modeling training to human alignment and strategical elicitation of the
full potential of existing pre-trained models. This paradigm shift, however, is
not fully realized in financial sentiment analysis (FSA), due to the
discriminative nature of this task and a lack of prescriptive knowledge of how
to leverage generative models in such a context. This study investigates the
effectiveness of the new paradigm, i.e., using LLMs without fine-tuning for
FSA. Rooted in Minsky's theory of mind and emotions, a design framework with
heterogeneous LLM agents is proposed. The framework instantiates specialized
agents using prior domain knowledge of the types of FSA errors and reasons on
the aggregated agent discussions. Comprehensive evaluation on FSA datasets show
that the framework yields better accuracies, especially when the discussions
are substantial. This study contributes to the design foundations and paves new
avenues for LLMs-based FSA. Implications on business and management are also
discussed.
- Abstract(参考訳): 大規模言語モデル(LLM)は、知的システムを設計する可能性を大幅に変え、膨大なデータ取得と新しいモデリングトレーニングから、既存のトレーニング済みモデルの完全な可能性のヒトのアライメントと戦略的活用へと焦点を移した。
しかし、このパラダイムシフトは金融感情分析(fsa)では、このタスクの差別的性質と、そのような文脈で生成モデルをどのように活用するかに関する規範的知識の欠如のため、完全には実現されていない。
本研究では,FSA を微調整することなく LLM を用いた新しいパラダイムの有効性について検討した。
ミンスキーの心と感情の理論を取り入れたヘテロジニアスLSMエージェントを用いた設計枠組みが提案されている。
このフレームワークは、fsaエラーのタイプと集約されたエージェントの議論の理由の事前ドメイン知識を使用して、専門的なエージェントをインスタンス化する。
FSAデータセットの総合的な評価は、特に議論が実質的である場合、フレームワークがより良い精度を得ることを示している。
本研究は, LLMs ベース FSA の設計基盤と新たな道の舗装に寄与する。
ビジネスとマネジメントへの影響についても論じる。
関連論文リスト
- Unconstrained Model Merging for Enhanced LLM Reasoning [42.079040543428036]
複数のエキスパートモデルをひとつの大きな言語モデルにマージする可能性について検討する。
等質なモデルアーキテクチャと異質なモデルアーキテクチャの両方に対応可能な,制約のないモデルマージフレームワークを提案する。
7つのベンチマークと9つの推論最適化LDMで、推論がマージから出現する重要な発見を明らかにする。
論文 参考訳(メタデータ) (2024-10-17T16:04:07Z) - Can LLMs be Scammed? A Baseline Measurement Study [0.0873811641236639]
様々な詐欺戦術に対するLarge Language Models(LLMs)の脆弱性を体系的に評価する。
まず、FINRA分類で同定された多様な詐欺カテゴリーを反映した37の明確に定義されたベース詐欺シナリオを組み込んだ。
第2に、汎用プロプライエタリ(GPT-3.5, GPT-4)とオープンソース(Llama)モデルを用いて、スカム検出における性能を解析する。
第三に、我々の研究は、詐欺戦術がLSMに対して最も効果的であるか、そして様々なペルソナの特徴や説得技術がこれらの脆弱性にどのように影響するかについての批判的な洞察を提供する。
論文 参考訳(メタデータ) (2024-10-14T05:22:27Z) - Deliberate Reasoning for LLMs as Structure-aware Planning with Accurate World Model [14.480267340831542]
大規模言語モデル(LLM)のためのSWAP(Structure-Aware Planning)を提案する。
SWAPは、世界モデルによる推論プロセスのガイドとして構造情報を導入し、ステップ上のソフト検証メカニズムを提供する。
SWAPは,数理推論,論理推論,コーディングタスクなど,多種多様な推論集約型ベンチマークで評価される。
論文 参考訳(メタデータ) (2024-10-04T04:23:36Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
エージェントベースのモデル(ABM)は、仮説的な解決策やポリシーの提案と検証に不可欠なパラダイムである。
大きな言語モデル(LLM)は、ドメイン間の知識とプログラミング能力をカプセル化することで、このプロセスの難しさを軽減できる可能性がある。
SAGEは、ターゲット問題に対する自動モデリングおよびソリューション生成のために設計された、汎用的なソリューション指向のABM生成フレームワークである。
論文 参考訳(メタデータ) (2024-02-04T07:59:06Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
大規模な言語モデル (LLM) は様々なNLPタスクにおいて優れた性能を示した。
本稿では,金融感情分析のためのLLMフレームワークを提案する。
提案手法の精度は15%から48%向上し,F1得点を得た。
論文 参考訳(メタデータ) (2023-10-06T05:40:23Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。