論文の概要: Can LLMs be Scammed? A Baseline Measurement Study
- arxiv url: http://arxiv.org/abs/2410.13893v1
- Date: Mon, 14 Oct 2024 05:22:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:59.213303
- Title: Can LLMs be Scammed? A Baseline Measurement Study
- Title(参考訳): LLMをスキャンできるか? : ベースライン計測による検討
- Authors: Udari Madhushani Sehwag, Kelly Patel, Francesca Mosca, Vineeth Ravi, Jessica Staddon,
- Abstract要約: 様々な詐欺戦術に対するLarge Language Models(LLMs)の脆弱性を体系的に評価する。
まず、FINRA分類で同定された多様な詐欺カテゴリーを反映した37の明確に定義されたベース詐欺シナリオを組み込んだ。
第2に、汎用プロプライエタリ(GPT-3.5, GPT-4)とオープンソース(Llama)モデルを用いて、スカム検出における性能を解析する。
第三に、我々の研究は、詐欺戦術がLSMに対して最も効果的であるか、そして様々なペルソナの特徴や説得技術がこれらの脆弱性にどのように影響するかについての批判的な洞察を提供する。
- 参考スコア(独自算出の注目度): 0.0873811641236639
- License:
- Abstract: Despite the importance of developing generative AI models that can effectively resist scams, current literature lacks a structured framework for evaluating their vulnerability to such threats. In this work, we address this gap by constructing a benchmark based on the FINRA taxonomy and systematically assessing Large Language Models' (LLMs') vulnerability to a variety of scam tactics. First, we incorporate 37 well-defined base scam scenarios reflecting the diverse scam categories identified by FINRA taxonomy, providing a focused evaluation of LLMs' scam detection capabilities. Second, we utilize representative proprietary (GPT-3.5, GPT-4) and open-source (Llama) models to analyze their performance in scam detection. Third, our research provides critical insights into which scam tactics are most effective against LLMs and how varying persona traits and persuasive techniques influence these vulnerabilities. We reveal distinct susceptibility patterns across different models and scenarios, underscoring the need for targeted enhancements in LLM design and deployment.
- Abstract(参考訳): 詐欺に効果的に抵抗できる生成AIモデルを開発することの重要性にもかかわらず、現在の文献では、そのような脅威に対する彼らの脆弱性を評価するための構造化されたフレームワークが欠如している。
本研究では、FINRA分類に基づくベンチマークを構築し、様々な詐欺行為に対して大規模言語モデル(LLM)の脆弱性を体系的に評価することで、このギャップに対処する。
まず、FINRA分類法で同定された多様な詐欺カテゴリを反映した37の明確に定義されたベース詐欺シナリオを取り入れ、LLMの詐欺検出能力を集中的に評価する。
第2に、汎用プロプライエタリ(GPT-3.5, GPT-4)とオープンソース(Llama)モデルを用いて、スカム検出における性能を解析する。
第三に、我々の研究は、詐欺戦術がLSMに対して最も効果的であるか、そして様々なペルソナの特徴や説得技術がこれらの脆弱性にどのように影響するかについて、批判的な洞察を提供する。
異なるモデルとシナリオにまたがって異なる感受性パターンを明らかにし、LLMの設計と展開においてターゲットとなる拡張の必要性を強調した。
関連論文リスト
- Characterizing and Evaluating the Reliability of LLMs against Jailbreak Attacks [23.782566331783134]
我々は3つのカテゴリ、61の特定の有害なカテゴリからの1525の質問、13の人気のあるLCMの10の最先端のジェイルブレイク戦略に焦点を当てた。
攻撃成功率(ASR)、毒性スコア(Toxicity Score)、Fluency(Fluency)、Token Length(Token Length)、文法エラー(Grammatical Errors)などの多次元指標を用いて、ジェイルブレイク下でのLLMのアウトプットを徹底的に評価する。
モデル,攻撃戦略,有害コンテンツの種類,および評価指標間の相関関係について検討し,多面的評価フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-18T01:58:03Z) - Can LLMs be Fooled? Investigating Vulnerabilities in LLMs [4.927763944523323]
LLM(Large Language Models)の出現は、自然言語処理(NLP)内の様々な領域で大きな人気を集め、膨大なパワーを誇っている。
本稿では,各脆弱性部の知見を合成し,新たな研究・開発の方向性を提案する。
現在の脆弱性の焦点を理解することで、将来のリスクを予測し軽減できます。
論文 参考訳(メタデータ) (2024-07-30T04:08:00Z) - Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability [44.99833362998488]
大規模言語モデル(LLM)は、幅広いタスクで素晴らしいパフォーマンスを示している。
特にLSMは敵攻撃に弱いことが知られており、入力に対する非受容的な変更はモデルの出力を誤解させる可能性がある。
本稿では,メカニスティック・インタプリタビリティ(MI)技術に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T09:55:34Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors [64.9938658716425]
安全でないユーザリクエストを認識して拒否する、大規模な言語モデル(LLM)の既存の評価は、3つの制限に直面している。
まず、既存の手法では、安全でないトピックの粗い粒度を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
第3に、既存の評価は大きなLCMに頼っているため、コストがかかる可能性がある。
論文 参考訳(メタデータ) (2024-06-20T17:56:07Z) - RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models [12.112914393948415]
RUPBenchは,多種多様な推論タスクにわたる大規模言語モデル(LLM)を評価するために設計されたベンチマークである。
我々のベンチマークには15の推論データセットが組み込まれており、コモンセンス、算術、論理、知識集約推論に分類されている。
GPT-4o, Llama3, Phi-3, Gemmaといった最先端のLCMの原文および摂動データセットの性能を調べることにより, その堅牢性およびエラーパターンを詳細に解析する。
論文 参考訳(メタデータ) (2024-06-16T17:26:44Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
論文 参考訳(メタデータ) (2024-05-20T14:34:01Z) - Assessing Adversarial Robustness of Large Language Models: An Empirical Study [24.271839264950387]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、敵の攻撃に対する頑強さは依然として重要な問題である。
Llama, OPT, T5 など,主要なオープンソース LLM の脆弱性を露呈する,新しいホワイトボックス型攻撃手法を提案する。
論文 参考訳(メタデータ) (2024-05-04T22:00:28Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。