論文の概要: Implications of Noise in Resistive Memory on Deep Neural Networks for
Image Classification
- arxiv url: http://arxiv.org/abs/2401.05820v1
- Date: Thu, 11 Jan 2024 10:36:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-12 15:16:42.471315
- Title: Implications of Noise in Resistive Memory on Deep Neural Networks for
Image Classification
- Title(参考訳): 画像分類のためのディープニューラルネットワークの抵抗記憶における雑音の影響
- Authors: Yannick Emonds, Kai Xi, Holger Fr\"oning
- Abstract要約: 抵抗メモリは本質的に不安定なデバイスであり、正しい読み書き操作を保証するためにかなりの労力を要する。
本稿では、模範記憶ユニットのノイズを模倣する特殊な雑音演算子を提案する。
我々は、CIFAR-10分類タスクにおける畳み込みニューラルネットワークのレジリエンスについて検討し、このレジリエンスを改善するためのいくつかの対策について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Resistive memory is a promising alternative to SRAM, but is also an
inherently unstable device that requires substantial effort to ensure correct
read and write operations. To avoid the associated costs in terms of area, time
and energy, the present work is concerned with exploring how much noise in
memory operations can be tolerated by image classification tasks based on
neural networks. We introduce a special noisy operator that mimics the noise in
an exemplary resistive memory unit, explore the resilience of convolutional
neural networks on the CIFAR-10 classification task, and discuss a couple of
countermeasures to improve this resilience.
- Abstract(参考訳): 抵抗メモリはSRAMに代わる有望な代替手段であるが、本質的には不安定なデバイスであり、正しい読み書き操作を保証するためにかなりの努力を要する。
本研究は,領域,時間,エネルギーの関連コストを回避するため,ニューラルネットワークに基づく画像分類タスクによって,メモリ操作におけるノイズの許容範囲を検討する。
本稿では,例えば抵抗記憶装置のノイズを模倣し,cifar-10分類タスクにおける畳み込みニューラルネットワークのレジリエンスを探索し,このレジリエンスを改善するための対策について検討する。
関連論文リスト
- Impact of white noise in artificial neural networks trained for classification: performance and noise mitigation strategies [0.0]
ニューロンレベルでの加法的および乗法的なガウスホワイトノイズがネットワークの精度に与える影響を考察する。
我々はいくつかのノイズ低減手法を分類タスクの基本設定に適用する。
論文 参考訳(メタデータ) (2024-11-07T01:21:12Z) - Streaming Neural Images [56.41827271721955]
Inlicit Neural Representations (INR) は信号表現の新しいパラダイムであり、画像圧縮にかなりの関心を集めている。
本研究では,INRの計算コスト,不安定な性能,堅牢性などの限界要因について検討する。
論文 参考訳(メタデータ) (2024-09-25T17:51:20Z) - Compressing the Backward Pass of Large-Scale Neural Architectures by
Structured Activation Pruning [0.0]
ディープニューラルネットワーク(DNN)におけるスパシティはソリューションとして注目されている。
この研究は、訓練中のメモリ消費を減らすことを目的として、短命の空間性に焦点を当てている。
大規模ニューラルアーキテクチャのトレーニング速度,精度,メモリ使用量を評価することにより,アクティベーションプルーニングの有効性を報告する。
論文 参考訳(メタデータ) (2023-11-28T15:31:31Z) - Expanding memory in recurrent spiking networks [2.8237889121096034]
リカレントスパイキングニューラルネットワーク(RSNN)は、スパイクのバイナリの性質によって強化される、消失する勾配問題のために訓練が難しいことで知られている。
我々はこれらの制限を回避する新しいスパイクニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-10-29T16:46:26Z) - MEIL-NeRF: Memory-Efficient Incremental Learning of Neural Radiance
Fields [49.68916478541697]
我々は、NeRF(MEIL-NeRF)のためのメモリ効率の良いインクリメンタル学習アルゴリズムを開発した。
MEIL-NeRFはNeRF自体からインスピレーションを得て、ニューラルネットワークがクエリとして与えられたピクセルRGB値を提供するメモリとして機能する。
その結果、MEIL-NeRFはメモリ消費と競合性能を一定に示すことができた。
論文 参考訳(メタデータ) (2022-12-16T08:04:56Z) - Robust Semantic Communications with Masked VQ-VAE Enabled Codebook [56.63571713657059]
本稿では,ロバストなエンドツーエンドのセマンティック通信システムにおいて,セマンティックノイズに対処するためのフレームワークを提案する。
セマンティックノイズに対処するため、重み付き対向トレーニングを開発し、トレーニングデータセットにセマンティックノイズを組み込む。
ノイズやタスク非関連の特徴を抑える機能重要モジュール (FIM) を開発した。
論文 参考訳(メタデータ) (2022-06-08T16:58:47Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
継続学習(CL)手法は、機械学習モデルが、以前にマスターされたタスクを壊滅的に忘れることなく、新しいタスクを学習できるようにすることを目的としている。
既存のCLアプローチは、しばしば、事前に確認されたサンプルのバッファを保持し、知識蒸留を行い、あるいはこの目標に向けて正規化技術を使用する。
我々は,現在および過去のタスクを任意の段階で学習するために,スパースニューロンのみを活性化し,選択することを提案する。
論文 参考訳(メタデータ) (2022-02-21T13:25:03Z) - Robust Processing-In-Memory Neural Networks via Noise-Aware
Normalization [26.270754571140735]
PIM加速器は、しばしば物理的成分の固有のノイズに悩まされる。
雑音設定に対してロバストなニューラルネットワーク性能を実現するためのノイズ非依存手法を提案する。
論文 参考訳(メタデータ) (2020-07-07T06:51:28Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
スパース符号化に基づく画像復元モデルの堅牢性と効率に触発され,深部ネットワークにおけるニューロンの空間性について検討した。
本手法は,隠れたニューロンに対する空間的制約を構造的に強制する。
実験により、複数の画像復元タスクのためのディープニューラルネットワークではスパース表現が不可欠であることが示されている。
論文 参考訳(メタデータ) (2020-06-08T05:15:17Z) - Evaluating complexity and resilience trade-offs in emerging memory
inference machines [0.6970352368216021]
深層ニューラルネットワークのコンパクトな実装は、予期せず、複数のシステム障害から崩壊するおそれがあることが示される。
我々の研究は、モザイクフレームワークを利用した高性能で強力なレジリエンスへの中間経路を提案する。
論文 参考訳(メタデータ) (2020-02-25T21:40:08Z) - Encoding-based Memory Modules for Recurrent Neural Networks [79.42778415729475]
本稿では,リカレントニューラルネットワークの設計とトレーニングの観点から,記憶サブタスクについて考察する。
本稿では,線形オートエンコーダを組み込んだエンコーディングベースのメモリコンポーネントを特徴とする新しいモデルであるLinear Memory Networkを提案する。
論文 参考訳(メタデータ) (2020-01-31T11:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。