論文の概要: Expanding memory in recurrent spiking networks
- arxiv url: http://arxiv.org/abs/2310.19067v1
- Date: Sun, 29 Oct 2023 16:46:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 14:39:19.734076
- Title: Expanding memory in recurrent spiking networks
- Title(参考訳): リカレントスパイクネットワークにおけるメモリ拡張
- Authors: Ismael Balafrej, Fabien Alibart, Jean Rouat
- Abstract要約: リカレントスパイキングニューラルネットワーク(RSNN)は、スパイクのバイナリの性質によって強化される、消失する勾配問題のために訓練が難しいことで知られている。
我々はこれらの制限を回避する新しいスパイクニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 2.8237889121096034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent spiking neural networks (RSNNs) are notoriously difficult to train
because of the vanishing gradient problem that is enhanced by the binary nature
of the spikes. In this paper, we review the ability of the current
state-of-the-art RSNNs to solve long-term memory tasks, and show that they have
strong constraints both in performance, and for their implementation on
hardware analog neuromorphic processors. We present a novel spiking neural
network that circumvents these limitations. Our biologically inspired neural
network uses synaptic delays, branching factor regularization and a novel
surrogate derivative for the spiking function. The proposed network proves to
be more successful in using the recurrent connections on memory tasks.
- Abstract(参考訳): リカレントスパイキングニューラルネットワーク(RSNN)は、スパイクのバイナリの性質によって強化される、消失する勾配問題のために訓練が難しいことで知られている。
本稿では,最先端のrsnnが長期記憶課題を解決する能力について検討し,その性能とハードウェアアナログニューロモルフィックプロセッサの実装に強い制約があることを示す。
これらの制限を回避する新しいスパイクニューラルネットワークを提案する。
生物学的にインスパイアされたニューラルネットワークは, シナプス遅延, 分岐因子規則化, スパイキング機能に新規なサロゲート誘導体を用いる。
提案したネットワークは、メモリタスクのリカレントコネクションの使用に成功している。
関連論文リスト
- Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
スパイキングニューラルネットワーク(SNN)は、生物学的にインスパイアされたニューラルネットワークモデルとして研究されている。
本稿では,SNNがシナプス遅延と時間符号化とを併用すると,グラフ推論の実行(知識)に長けていることを明らかにする。
論文 参考訳(メタデータ) (2024-05-27T05:53:30Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - Expressivity of Spiking Neural Networks [15.181458163440634]
本研究では,ニューロンの発射時間内に情報を符号化したスパイクニューラルネットワークの能力について検討する。
ReLUネットワークとは対照的に、スパイクニューラルネットワークは連続関数と不連続関数の両方を実現することができる。
論文 参考訳(メタデータ) (2023-08-16T08:45:53Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - Spike-based computation using classical recurrent neural networks [1.9171404264679484]
スパイキングニューラルネットワーク(英: Spiking Neural Network)は、ニューロン間の通信が、スパイクと呼ばれるイベントのみによって構成される人工ニューラルネットワークである。
我々は、よく知られた、訓練が容易なリカレントニューラルネットワークのダイナミクスを変更して、イベントベースにする。
この新ネットワークは,MNISTベンチマークにおいて,他の種類のスパイクネットワークに匹敵する性能が得られることを示す。
論文 参考訳(メタデータ) (2023-06-06T12:19:12Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - A Resource-efficient Spiking Neural Network Accelerator Supporting
Emerging Neural Encoding [6.047137174639418]
スパイキングニューラルネットワーク(SNN)は、その低消費電力乗算自由コンピューティングにより、最近勢いを増している。
SNNは、大規模なモデルのための人工知能ニューラルネットワーク(ANN)と同様の精度に達するために、非常に長いスパイク列車(1000台まで)を必要とする。
ニューラルエンコーディングでSNNを効率的にサポートできる新しいハードウェアアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-06T10:56:25Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。