Seven Failure Points When Engineering a Retrieval Augmented Generation
System
- URL: http://arxiv.org/abs/2401.05856v1
- Date: Thu, 11 Jan 2024 12:04:11 GMT
- Title: Seven Failure Points When Engineering a Retrieval Augmented Generation
System
- Authors: Scott Barnett, Stefanus Kurniawan, Srikanth Thudumu, Zach Brannelly,
Mohamed Abdelrazek
- Abstract summary: RAG systems aim to reduce the problem of hallucinated responses from large language models.
RAG systems suffer from limitations inherent to information retrieval systems.
We present an experience report on the failure points of RAG systems from three case studies.
- Score: 1.8776685617612472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software engineers are increasingly adding semantic search capabilities to
applications using a strategy known as Retrieval Augmented Generation (RAG). A
RAG system involves finding documents that semantically match a query and then
passing the documents to a large language model (LLM) such as ChatGPT to
extract the right answer using an LLM. RAG systems aim to: a) reduce the
problem of hallucinated responses from LLMs, b) link sources/references to
generated responses, and c) remove the need for annotating documents with
meta-data. However, RAG systems suffer from limitations inherent to information
retrieval systems and from reliance on LLMs. In this paper, we present an
experience report on the failure points of RAG systems from three case studies
from separate domains: research, education, and biomedical. We share the
lessons learned and present 7 failure points to consider when designing a RAG
system. The two key takeaways arising from our work are: 1) validation of a RAG
system is only feasible during operation, and 2) the robustness of a RAG system
evolves rather than designed in at the start. We conclude with a list of
potential research directions on RAG systems for the software engineering
community.
Related papers
- DeepSieve: Information Sieving via LLM-as-a-Knowledge-Router [57.28685457991806]
DeepSieve is an agentic RAG framework that incorporates information sieving via LLM-as-a-knowledge-router.<n>Our design emphasizes modularity, transparency, and adaptability, leveraging recent advances in agentic system design.
arXiv Detail & Related papers (2025-07-29T17:55:23Z) - Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - Leveraging LLM-Assisted Query Understanding for Live Retrieval-Augmented Generation [6.62734677678023]
Real-world live retrieval-augmented generation (RAG) systems face challenges when processing user queries that are noisy, ambiguous, and contain multiple intents.<n>This paper introduces Omni-RAG, a novel framework designed to improve the robustness and effectiveness of RAG systems in live, open-domain settings.
arXiv Detail & Related papers (2025-06-26T15:35:12Z) - LTRR: Learning To Rank Retrievers for LLMs [53.285436927963865]
We show that routing-based RAG systems can outperform the best single-retriever-based systems.<n>Performance gains are especially pronounced in models trained with the Answer Correctness (AC) metric.<n>As part of the SIGIR 2025 LiveRAG challenge, our submitted system demonstrated the practical viability of our approach.
arXiv Detail & Related papers (2025-06-16T17:53:18Z) - Knowing You Don't Know: Learning When to Continue Search in Multi-round RAG through Self-Practicing [4.874077691069634]
Retrieval Augmented Generation (RAG) has shown strong capability in enhancing language models' knowledge and reducing AI generative hallucinations.<n>Current multi-round RAG systems may continue searching even when enough information has already been retrieved.<n>This paper introduces a new framework, SIM-RAG, to explicitly enhance RAG systems' self-awareness and multi-round retrieval capabilities.
arXiv Detail & Related papers (2025-05-05T17:39:35Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge.
We propose a novel framework called textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) which achieves adaptive retrieval and useful information localization.
mR$2$AG significantly outperforms state-of-the-art MLLMs on INFOSEEK and Encyclopedic-VQA
arXiv Detail & Related papers (2024-11-22T16:15:50Z) - ChunkRAG: Novel LLM-Chunk Filtering Method for RAG Systems [2.8692611791027893]
Retrieval-Augmented Generation (RAG) systems generate inaccurate responses due to the retrieval of irrelevant or loosely related information.
We propose ChunkRAG, a framework that enhances RAG systems by evaluating and filtering retrieved information at the chunk level.
arXiv Detail & Related papers (2024-10-25T14:07:53Z) - RAG-DDR: Optimizing Retrieval-Augmented Generation Using Differentiable Data Rewards [78.74923079748521]
Retrieval-Augmented Generation (RAG) has proven its effectiveness in mitigating hallucinations in Large Language Models (LLMs)
Current approaches use instruction tuning to optimize LLMs, improving their ability to utilize retrieved knowledge.
We propose a Differentiable Data Rewards ( DDR) method, which trains RAG systems by aligning data preferences between different RAG modules.
arXiv Detail & Related papers (2024-10-17T12:53:29Z) - MemoRAG: Boosting Long Context Processing with Global Memory-Enhanced Retrieval Augmentation [60.04380907045708]
Retrieval-Augmented Generation (RAG) is considered a promising strategy to address this problem.
We propose MemoRAG, a novel RAG framework empowered by global memory-augmented retrieval.
MemoRAG achieves superior performances across a variety of long-context evaluation tasks.
arXiv Detail & Related papers (2024-09-09T13:20:31Z) - RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation [61.14660526363607]
We propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules.
RAGChecker has significantly better correlations with human judgments than other evaluation metrics.
The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems.
arXiv Detail & Related papers (2024-08-15T10:20:54Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - Retrieval-Augmented Generation for Natural Language Processing: A Survey [25.11304732038443]
retrieval-augmented generation (RAG) leverages an external knowledge database to augment large language models.
This paper reviews all significant techniques of RAG, especially in the retriever and the retrieval fusions.
RAG is used in representative natural language processing tasks and industrial scenarios.
arXiv Detail & Related papers (2024-07-18T06:06:53Z) - R^2AG: Incorporating Retrieval Information into Retrieval Augmented Generation [11.890598082534577]
Retrieval augmented generation (RAG) has been applied in many scenarios to augment large language models (LLMs) with external documents provided by retrievers.
This paper proposes R$2$AG, a novel enhanced RAG framework that incorporates Retrieval information into Retrieval Augmented Generation.
arXiv Detail & Related papers (2024-06-19T06:19:48Z) - Towards a Search Engine for Machines: Unified Ranking for Multiple Retrieval-Augmented Large Language Models [21.115495457454365]
uRAG is a framework with a unified retrieval engine that serves multiple downstream retrieval-augmented generation (RAG) systems.
We build a large-scale experimentation ecosystem consisting of 18 RAG systems that engage in training and 18 unknown RAG systems that use the uRAG as the new users of the search engine.
arXiv Detail & Related papers (2024-04-30T19:51:37Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR is a RElevance-Aware Retrieval-augmented approach for open-domain question answering (QA)
We develop a novel architecture for LLM-based RAG systems, by incorporating a specially designed assessment module.
Experiments on four open-domain QA tasks show that REAR significantly outperforms previous a number of competitive RAG approaches.
arXiv Detail & Related papers (2024-02-27T13:22:51Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z) - The Power of Noise: Redefining Retrieval for RAG Systems [19.387105120040157]
Retrieval-Augmented Generation (RAG) has emerged as a method to extend beyond the pre-trained knowledge of Large Language Models.
We focus on the type of passages IR systems within a RAG solution should retrieve.
arXiv Detail & Related papers (2024-01-26T14:14:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.