論文の概要: Combining Normalizing Flows and Quasi-Monte Carlo
- arxiv url: http://arxiv.org/abs/2401.05934v1
- Date: Thu, 11 Jan 2024 14:17:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-12 14:18:12.333404
- Title: Combining Normalizing Flows and Quasi-Monte Carlo
- Title(参考訳): 正規化流と準モンテカルロを組み合わせる
- Authors: Charly Andral
- Abstract要約: 近年の機械学習の進歩はモンテカルロ法を改良するための新しい手法の開発に繋がった。
数値実験により,この組み合わせにより,従来のモンテカルロを用いて流れをサンプリングした場合よりも,分散度が著しく低い推定器が得られることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in machine learning have led to the development of new
methods for enhancing Monte Carlo methods such as Markov chain Monte Carlo
(MCMC) and importance sampling (IS). One such method is normalizing flows,
which use a neural network to approximate a distribution by evaluating it
pointwise. Normalizing flows have been shown to improve the performance of MCMC
and IS. On the other side, (randomized) quasi-Monte Carlo methods are used to
perform numerical integration. They replace the random sampling of Monte Carlo
by a sequence which cover the hypercube more uniformly, resulting in better
convergence rates for the error that plain Monte Carlo. In this work, we
combine these two methods by using quasi-Monte Carlo to sample the initial
distribution that is transported by the flow. We demonstrate through numerical
experiments that this combination can lead to an estimator with significantly
lower variance than if the flow was sampled with a classic Monte Carlo.
- Abstract(参考訳): 機械学習の最近の進歩は、マルコフ連鎖モンテカルロ(mcmc)や重要サンプリング(is)のようなモンテカルロ法を強化する新しい手法の開発につながった。
そのような方法の1つはフローの正規化であり、ニューラルネットワークを用いて分布をポイントワイズで評価することで分布を近似する。
正規化流はMCMCとISの性能を向上させることが示されている。
一方、(ランダム化された)準モンテカルロ法を用いて数値積分を行う。
モンテカルロのランダムサンプリングは、ハイパーキューブをより均一にカバーする列によって置き換えられ、その結果、モンテカルロの誤差に対する収束率が向上する。
本研究では, この2つの手法を疑似モンテカルロを用いて組み合わせ, フローによって輸送される初期分布をサンプリングする。
数値実験により, この組み合わせは, 古典的なモンテカルロで試料化した場合よりも, かなり低い分散率で推定できることを示した。
関連論文リスト
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Reverse Diffusion Monte Carlo [19.35592726471155]
逆拡散モンテカルロ(rdMC)と呼ばれる新しいモンテカルロサンプリングアルゴリズムを提案する。
rdMCはマルコフ連鎖モンテカルロ(MCMC)法とは異なる。
論文 参考訳(メタデータ) (2023-07-05T05:42:03Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
PLモデルにおいて,より標本効率の高い予測値を生成するための新しい手法を開発した。
Amazon MusicのリアルなレコメンデーションデータとYahooの学習からランクへの挑戦を理論的にも実証的にも使用しています。
論文 参考訳(メタデータ) (2022-05-12T11:15:47Z) - Continual Repeated Annealed Flow Transport Monte Carlo [93.98285297760671]
我々はCRAFT(Continuous Repeated Annealed Flow Transport Monte Carlo)を提案する。
シーケンシャルなモンテカルロサンプリングと正規化フローを用いた変分推論を組み合わせる。
CRAFTは格子場の実例で驚くほど正確な結果が得られることを示す。
論文 参考訳(メタデータ) (2022-01-31T10:58:31Z) - Antithetic Riemannian Manifold And Quantum-Inspired Hamiltonian Monte
Carlo [3.686886131767452]
我々は、ハミルトニアンモンテカルロと量子インスパイアされたハミルトニアンモンテカルロのアンチセティックバージョンである新しいアルゴリズムを提案する。
ハミルトニアン・モンテカルロにアンチセティックサンプリングを加えると、バニラ・ハミルトニアン・モンテカルロよりも高い有効試料率が得られることが示されている。
この分析は,実世界の金融市場データを用いたジャンプ拡散プロセス,およびベイジアンロジスティック回帰を用いた実世界のベンチマーク分類タスクで実施される。
論文 参考訳(メタデータ) (2021-07-05T15:03:07Z) - Deterministic Gibbs Sampling via Ordinary Differential Equations [77.42706423573573]
本稿では,自律的ODEとツールを用いた決定論的測度保存ダイナミクスの一般構築について述べる。
我々は、ハイブリッドモンテカルロや他の決定論的サンプルが、我々の理論の特別な場合としてどのように従うかを示す。
論文 参考訳(メタデータ) (2021-06-18T15:36:09Z) - Annealed Flow Transport Monte Carlo [91.20263039913912]
Annealed Flow Transport (AFT) built on Annealed Importance Smpling (AIS) and Sequential Monte Carlo (SMC)
AFTは、連続したターゲットに向かって粒子をプッシュするために順次学習されるNFに依存します。
AFTの人口バージョンの連続時間スケーリング限界は、Feynman--Kac測度によって与えられることを示した。
論文 参考訳(メタデータ) (2021-02-15T12:05:56Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - Connecting the Dots: Numerical Randomized Hamiltonian Monte Carlo with
State-Dependent Event Rates [0.0]
連続目標分布に対するマルコフ連鎖モンテカルロ法に代わる,頑健で,使いやすく,計算的に高速な手法を提案する。
提案アルゴリズムは、関連するベンチマークと比較して大きなスピードアップと安定性の向上をもたらす可能性がある。
高品質なODEコードへのアクセスが保証され、提案手法は実装も使用も容易であり、高度に困難で高次元のターゲット分布に対しても有効である。
論文 参考訳(メタデータ) (2020-05-04T06:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。