論文の概要: Extreme Compression of Large Language Models via Additive Quantization
- arxiv url: http://arxiv.org/abs/2401.06118v3
- Date: Sat, 8 Jun 2024 10:55:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 04:08:57.650041
- Title: Extreme Compression of Large Language Models via Additive Quantization
- Title(参考訳): 付加量子化による大規模言語モデルの極端圧縮
- Authors: Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, Dan Alistarh,
- Abstract要約: AQLMは、パラメータ毎に3ビット未満に圧縮する場合、精度-vs-モデルサイズで最適である最初のスキームである。
トークン生成のためのAQLMの高速GPUおよびCPU実装を提供する。
- 参考スコア(独自算出の注目度): 59.3122859349777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of accurate open large language models (LLMs) has led to a race towards performant quantization techniques which can enable their execution on end-user devices. In this paper, we revisit the problem of ``extreme'' LLM compression -- defined as targeting extremely low bit counts, such as 2 to 3 bits per parameter -- from the point of view of classic methods in Multi-Codebook Quantization (MCQ). Our algorithm, called AQLM, generalizes the classic Additive Quantization (AQ) approach for information retrieval to advance the state-of-the-art in LLM compression, via two innovations: 1) learned additive quantization of weight matrices in input-adaptive fashion, and 2) joint optimization of codebook parameters across each transformer blocks. Broadly, AQLM is the first scheme that is Pareto optimal in terms of accuracy-vs-model-size when compressing to less than 3 bits per parameter, and significantly improves upon all known schemes in the extreme compression (2bit) regime. In addition, AQLM is practical: we provide fast GPU and CPU implementations of AQLM for token generation, which enable us to match or outperform optimized FP16 implementations for speed, while executing in a much smaller memory footprint.
- Abstract(参考訳): 正確なオープン大言語モデル(LLM)の出現は、エンドユーザーデバイス上での実行を可能にするパフォーマンス量子化技術への競争に繋がった。
本稿では,Multi-Codebook Quantization (MCQ) における古典的手法の観点から,<extreme''' LLM圧縮(パラメータあたり2~3ビットなど,極めて低ビット数を対象とする)の問題を再考する。
我々のアルゴリズムはAQLMと呼ばれ、情報検索のための古典的な加算量子化(AQ)アプローチを一般化し、LLM圧縮の最先端を推し進める。
1)入力適応方式による重量行列の学習的加算量化,及び
2) トランスブロック間でのコードブックパラメータの協調最適化。
広くいうと、AQLMはパラメータあたり3ビット未満に圧縮する場合の精度-vs-モデルサイズでパレートが最適となる最初のスキームであり、極端な圧縮(2ビット)方式では既知のすべてのスキームを大幅に改善する。
さらに、AQLMは、トークン生成のために高速なGPUとCPU実装を提供するので、最適化されたFP16実装を高速にマッチングまたは性能良くし、メモリフットプリントをはるかに小さくして実行できます。
関連論文リスト
- GPTQT: Quantize Large Language Models Twice to Push the Efficiency [1.3149617027696827]
本稿では,学習後量子化手法であるGPTQTを導入し,メモリ使用量の削減と処理速度の向上を図る。
重みの量子化誤差の最小化は非効率であり、過度に適合することを示した。
GPTQTは、最初は線形量子化を用いて重みを相対的に高いビットに量子化し、続いて得られた重みを低ビットバイナリ符号化に変換する。
論文 参考訳(メタデータ) (2024-07-03T08:08:01Z) - Optimization-based Structural Pruning for Large Language Models without Back-Propagation [57.9629676017527]
本稿では,Large-Language Models (LLMs) を用いた最適化に基づく構造解析手法を提案する。
本手法は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
提案手法は,A100 GPUの13Bモデルに対して,約35GBのメモリで2.7時間動作する。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - Low-Rank Quantization-Aware Training for LLMs [8.535254310145005]
大規模言語モデル(LLM)は、一様だが、計算とメモリの需要がますます増大しているため、その実践的な展開は困難である。
LLMのための軽量かつメモリ効率のQATアルゴリズムであるLR-QATを提案する。
提案手法は、PTQ(Common-training Quantization)アプローチよりも優れ、メモリ使用率のごく一部でフルモデルQATと同じモデル性能に達する。
論文 参考訳(メタデータ) (2024-06-10T15:44:22Z) - CLAQ: Pushing the Limits of Low-Bit Post-Training Quantization for LLMs [44.03692512352445]
カラムレベル適応量量子化(CLAQ)は、LLM(Large Language Models)量子化のための新しく効果的なフレームワークである。
本稿では,LLM量子化のための3種類の適応戦略を導入することで,新しい効果的なCLAQフレームワークを提案する。
LLaMA-1, LLaMA-2, Yi など,様々な主要なオープンソース LLM に関する実験により, 提案手法が様々なビット設定における最先端結果を達成することを示す。
論文 参考訳(メタデータ) (2024-05-27T14:49:39Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - ModuLoRA: Finetuning 2-Bit LLMs on Consumer GPUs by Integrating with
Modular Quantizers [38.16040503271727]
大規模言語モデル(LLM)のためのメモリ効率の高い微調整アルゴリズムを提案する。
lploraは、テキスト分類、自然言語推論、タスクに続く命令に対する競合性能を、既存のアプローチよりもはるかに少ないメモリで実現している。
私たちはまた、一般的な要約タスクにおいて最先端のROUGEスコアを超えます。
論文 参考訳(メタデータ) (2023-09-28T02:55:01Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight
Compression [76.73007709690306]
Sparse-Quantized Representation (SpQR) は,新しい圧縮フォーマットと量子化技術である。
SpQRは、高精度なLLaMAとFalcon LLMのパープレキシティにおいて、1%未満の相対的精度の損失を達成している。
これにより、1台の24GBのコンシューマGPU上で33BパラメータのLSMを実行でき、15%のスピードアップでパフォーマンスの劣化は発生しない。
論文 参考訳(メタデータ) (2023-06-05T17:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。