論文の概要: Qrlew: Rewriting SQL into Differentially Private SQL
- arxiv url: http://arxiv.org/abs/2401.06273v1
- Date: Thu, 11 Jan 2024 22:01:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 20:58:08.545233
- Title: Qrlew: Rewriting SQL into Differentially Private SQL
- Title(参考訳): Qrlew: SQLを微分プライベートなSQLに書き換える
- Authors: Nicolas Grislain, Paul Roussel, Victoria de Sainte Agathe
- Abstract要約: Qrlewはオープンソースのライブラリで、Relationsにクエリを解析できる。
リッチなデータ型、値範囲、および行のオーナシップを追跡します。
- 参考スコア(独自算出の注目度): 2.5475486924467075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces Qrlew, an open source library that can parse SQL
queries into Relations -- an intermediate representation -- that keeps track of
rich data types, value ranges, and row ownership; so that they can easily be
rewritten into differentially-private equivalent and turned back into SQL
queries for execution in a variety of standard data stores.
With Qrlew, a data practitioner can express their data queries in standard
SQL; the data owner can run the rewritten query without any technical
integration and with strong privacy guarantees on the output; and the query
rewriting can be operated by a privacy-expert who must be trusted by the owner,
but may belong to a separate organization.
- Abstract(参考訳): 本稿では、SQLクエリをリレーショナル(中間表現)に解析するオープンソースライブラリであるQrlewを紹介し、リッチなデータ型、値範囲、行のオーナシップをトラックする。
Qrlewでは、データ実践者が標準のSQLでデータクエリを表現できる。データ所有者は、技術的統合なしに書き直されたクエリを実行でき、出力に対して強力なプライバシ保証を持つ。クエリ書き換えは、所有者に信頼されなければならないが、別の組織に属するかもしれないプライバシー専門家によって操作できる。
関連論文リスト
- AMBROSIA: A Benchmark for Parsing Ambiguous Questions into Database Queries [56.82807063333088]
我々は,新たなベンチマークであるAMBROSIAを導入し,テキスト・ツー・オープン・プログラムの開発を促進することを期待する。
私たちのデータセットには、3種類のあいまいさ(スコープのあいまいさ、アタッチメントのあいまいさ、あいまいさ)を示す質問が含まれている。
いずれの場合も、データベースのコンテキストが提供されてもあいまいさは持続する。
これは、スクラッチからデータベースを制御して生成する、新しいアプローチによって実現される。
論文 参考訳(メタデータ) (2024-06-27T10:43:04Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - CoE-SQL: In-Context Learning for Multi-Turn Text-to-SQL with Chain-of-Editions [22.493487741249716]
大規模言語モデル(LLM)は、様々なドメインやタスクにおいて印象的な機能を持つことが実証されている。
マルチターンテキスト・ツー・タスクにおけるプロンプト設計の問題について検討し,LLMの推論能力の向上を図る。
論文 参考訳(メタデータ) (2024-05-04T16:56:14Z) - dIR -- Discrete Information Retrieval: Conversational Search over
Unstructured (and Structured) Data with Large Language Models [0.16060477887377675]
本稿では,自由テキストと構造化知識の両方を問う統一インターフェースとして,dIR,disrete Information Retrievalを提案する。
我々は、独自の質問/回答データセットを用いて、我々のアプローチを検証し、dIRがフリーテキスト上で全く新しいクエリーのクラスを作成できると結論付けた。
論文 参考訳(メタデータ) (2023-12-20T18:41:44Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
Prompt"は、Text-to-LLMのいくつかのショットプロンプト機能を改善するように設計されている。
Prompt"は、ラベル付きデータが少なく、テキスト内学習における従来のアプローチよりも大きなマージンで優れている。
emphPromptはテキスト内学習における従来の手法よりも優れており,ラベル付きデータはほとんどない。
論文 参考訳(メタデータ) (2023-11-06T05:24:06Z) - SQLformer: Deep Auto-Regressive Query Graph Generation for Text-to-SQL Translation [16.07396492960869]
本稿では,テキストからテキストへの変換処理に特化して設計されたトランスフォーマーアーキテクチャを提案する。
我々のモデルは、実行可能層とデコーダ層に構造的帰納バイアスを組み込んで、クエリを自動で抽象構文木(AST)として予測する。
論文 参考訳(メタデータ) (2023-10-27T00:13:59Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - CQR-SQL: Conversational Question Reformulation Enhanced
Context-Dependent Text-to-SQL Parsers [35.36754559708944]
コンテキスト依存型テキスト参照は、マルチターン質問をデータベース関連のクエリに変換するタスクである。
本稿では,CQR-Coupleを提案する。このCQR-Coupleは,CQR学習を用いて,文脈依存のforsql解析を明示的に活用し,分離する。
執筆時点で、我々のCQRカップリングは2つの文脈依存ベンチマークSParCとCoに対して、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-05-16T13:52:42Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
我々は最近提案されたQDMR(QDMR)という意味表現を活用している。
質問やQDMR構造(非専門家によって注釈付けされたり、自動予測されたりする)、回答が与えられたら、我々は自動的にsqlクエリを合成できる。
本結果は,NL-ベンチマークデータを用いて訓練したモデルと,弱い教師付きモデルが競合することを示す。
論文 参考訳(メタデータ) (2021-12-12T20:02:42Z) - Dual Reader-Parser on Hybrid Textual and Tabular Evidence for Open
Domain Question Answering [78.9863753810787]
世界の知識は構造化データベースに保存されている。
クエリ言語は、複雑な推論を必要とする質問に答えるだけでなく、完全な説明可能性を提供することができる。
論文 参考訳(メタデータ) (2021-08-05T22:04:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。