Uncertainty-aware multi-fidelity surrogate modeling with noisy data
- URL: http://arxiv.org/abs/2401.06447v2
- Date: Tue, 29 Oct 2024 17:38:16 GMT
- Title: Uncertainty-aware multi-fidelity surrogate modeling with noisy data
- Authors: Katerina Giannoukou, Stefano Marelli, Bruno Sudret,
- Abstract summary: In real-world applications, uncertainty is present in both high- and low-fidelity models due to measurement or numerical noise.
This paper introduces a comprehensive framework for multi-fidelity surrogate modeling that handles noise-contaminated data.
The proposed framework offers a natural approach to combining physical experiments and computational models.
- Score: 0.0
- License:
- Abstract: Emulating high-accuracy computationally expensive models is crucial for tasks requiring numerous model evaluations, such as uncertainty quantification and optimization. When lower-fidelity models are available, they can be used to improve the predictions of high-fidelity models. Multi-fidelity surrogate models combine information from sources of varying fidelities to construct an efficient surrogate model. However, in real-world applications, uncertainty is present in both high- and low-fidelity models due to measurement or numerical noise, as well as lack of knowledge due to the limited experimental design budget. This paper introduces a comprehensive framework for multi-fidelity surrogate modeling that handles noise-contaminated data and is able to estimate the underlying noise-free high-fidelity model. Our methodology quantitatively incorporates the different types of uncertainty affecting the problem and emphasizes on delivering precise estimates of the uncertainty in its predictions both with respect to the underlying high-fidelity model and unseen noise-contaminated high-fidelity observations, presented through confidence and prediction intervals, respectively. Additionally, the proposed framework offers a natural approach to combining physical experiments and computational models by treating noisy experimental data as high-fidelity sources and white-box computational models as their low-fidelity counterparts. The effectiveness of our methodology is showcased through synthetic examples and a wind turbine application.
Related papers
- Uncertainty Quantification of Surrogate Models using Conformal Prediction [7.445864392018774]
We formalise a conformal prediction framework that satisfies predictions in a model-agnostic manner, requiring near-zero computational costs.
The paper looks at providing statistically valid error bars for deterministic models, as well as crafting guarantees to the error bars of probabilistic models.
arXiv Detail & Related papers (2024-08-19T10:46:19Z) - Practical multi-fidelity machine learning: fusion of deterministic and Bayesian models [0.34592277400656235]
Multi-fidelity machine learning methods integrate scarce, resource-intensive high-fidelity data with abundant but less accurate low-fidelity data.
We propose a practical multi-fidelity strategy for problems spanning low- and high-dimensional domains.
arXiv Detail & Related papers (2024-07-21T10:40:50Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - ALUM: Adversarial Data Uncertainty Modeling from Latent Model
Uncertainty Compensation [25.67258563807856]
We propose a novel method called ALUM to handle the model uncertainty and data uncertainty in a unified scheme.
Our proposed ALUM is model-agnostic which can be easily implemented into any existing deep model with little extra overhead.
arXiv Detail & Related papers (2023-03-29T17:24:12Z) - General multi-fidelity surrogate models: Framework and active learning
strategies for efficient rare event simulation [1.708673732699217]
Estimating the probability of failure for complex real-world systems is often prohibitively expensive.
This paper presents a robust multi-fidelity surrogate modeling strategy.
It is shown to be highly accurate while drastically reducing the number of high-fidelity model calls.
arXiv Detail & Related papers (2022-12-07T00:03:21Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Context-aware surrogate modeling for balancing approximation and
sampling costs in multi-fidelity importance sampling and Bayesian inverse
problems [0.0]
Multi-fidelity methods leverage low-cost surrogate models to speed up computations.
Because surrogate and high-fidelity models are used together, poor predictions by surrogate models can be compensated with frequent recourse to high-fidelity models.
This work considers multi-fidelity importance sampling and theoretically and computationally trades off increasing the fidelity of surrogate models.
arXiv Detail & Related papers (2020-10-22T13:31:51Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.