論文の概要: Graph Representation Learning for Parameter Transferability in Quantum Approximate Optimization Algorithm
- arxiv url: http://arxiv.org/abs/2401.06655v2
- Date: Tue, 9 Jul 2024 15:43:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 00:01:01.028340
- Title: Graph Representation Learning for Parameter Transferability in Quantum Approximate Optimization Algorithm
- Title(参考訳): 量子近似最適化アルゴリズムにおけるパラメータ転送可能性のためのグラフ表現学習
- Authors: Jose Falla, Quinn Langfitt, Yuri Alexeev, Ilya Safro,
- Abstract要約: 量子近似最適化アルゴリズム(QAOA)は、量子拡張最適化による量子優位性を達成するための最も有望な候補の1つである。
本研究では,5種類のグラフ埋め込み手法を適用し,パラメータ転送可能性に対する適切なドナー候補を決定する。
この手法を用いて,パラメータ最適化に要するイテレーション数を効果的に削減し,目標問題に対する近似解を桁違いに高速化する。
- 参考スコア(独自算出の注目度): 1.0971022294548696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced combinatorial optimization. Optimal QAOA parameter concentration effects for special MaxCut problem instances have been observed, but a rigorous study of the subject is still lacking. Due to clustering of optimal QAOA parameters for MaxCut, successful parameter transferability between different MaxCut instances can be explained and predicted based on local properties of the graphs, including the type of subgraphs (lightcones) from which graphs are composed as well as the overall degree of nodes in the graph (parity). In this work, we apply five different graph embedding techniques to determine good donor candidates for parameter transferability, including parameter transferability between different classes of MaxCut instances. Using this technique, we effectively reduce the number of iterations required for parameter optimization, obtaining an approximate solution to the target problem with an order of magnitude speedup. This procedure also effectively removes the problem of encountering barren plateaus during the variational optimization of parameters. Additionally, our findings demonstrate that the transferred parameters maintain effectiveness when subjected to noise, supporting their use in real-world quantum applications. This work presents a framework for identifying classes of combinatorial optimization instances for which optimal donor candidates can be predicted such that QAOA can be substantially accelerated under both ideal and noisy conditions.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、量子強化組合せ最適化による量子優位性を達成するための最も有望な候補の1つである。
特殊MaxCut問題インスタンスに対する最適QAOAパラメータ濃度効果が観測されているが、厳密な研究はいまだ不十分である。
MaxCutの最適QAOAパラメータのクラスタリングにより、グラフを構成するサブグラフ(光線)のタイプやグラフ内のノードの全体度(パリティ)など、グラフの局所特性に基づいて、異なるMaxCutインスタンス間のパラメータ転送性が説明され、予測できる。
本研究では,MaxCutインスタンスの異なるクラス間のパラメータ転送可能性を含む,パラメータ転送可能性の優れたドナー候補を決定するために,5種類のグラフ埋め込み手法を適用した。
この手法を用いて,パラメータ最適化に要するイテレーション数を効果的に削減し,目標問題に対する近似解を桁違いに高速化する。
この手法はパラメータの変分最適化時に不毛の高原に遭遇する問題を効果的に除去する。
さらに, 移動パラメータは雑音を受ける際の有効性を維持し, 実世界の量子アプリケーションでの利用をサポートすることを示した。
本研究は,QAOAが理想的条件と雑音条件の両方で著しく加速されるように最適なドナー候補を予測できる組合せ最適化インスタンスのクラスを特定するためのフレームワークを提案する。
関連論文リスト
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Similarity-Based Parameter Transferability in the Quantum Approximate
Optimization Algorithm [2.985148456817082]
特定の値に関する最適なQAOAパラメータのクラスタリングを示す。
異なるQAOAインスタンス間のパラメータの転送性がうまく説明できる。
近似比が等しい大きなアクセプタグラフに対して、最適ドナーグラフQAOAパラメータをほぼ最適パラメータとして使用できることを示す。
論文 参考訳(メタデータ) (2023-07-11T16:35:49Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Unsupervised strategies for identifying optimal parameters in Quantum
Approximate Optimization Algorithm [3.508346077709686]
最適化なしでパラメータを設定するための教師なし機械学習手法について検討する。
繰り返しに使用するQAOAパラメータの数が3ドルに制限された場合、これらをRecursive-QAOAで3ドルまで紹介します。
我々は、アングルを広範囲に最適化し、多数のサーキットコールを省く場合と同じような性能を得る。
論文 参考訳(メタデータ) (2022-02-18T19:55:42Z) - STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization [74.1615979057429]
本研究では,スムーズな損失関数に対する期待値である非バッチ最適化問題について検討する。
我々の研究は、学習率と運動量パラメータを適応的に設定する新しいアプローチとともに、STORMアルゴリズムの上に構築されている。
論文 参考訳(メタデータ) (2021-11-01T15:43:36Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Transferability of optimal QAOA parameters between random graphs [3.321726991033431]
本稿では, グラフの局所特性に基づいて, 特定の値に関する最適QAOAパラメータの収束を説明・予測できることを示す。
6ノードのランダムグラフに対して最適化されたパラメータを64ノードのランダムグラフに対してほぼ最適なパラメータとして変更することなくうまく利用できることを示す。
論文 参考訳(メタデータ) (2021-06-14T15:57:47Z) - Empirical performance bounds for quantum approximate optimization [0.27998963147546135]
パフォーマンスバウンダリの定量化は、QAOAが現実のアプリケーションの解決に有効である可能性についての洞察を提供する。
QAOA は、ほとんどのグラフに対して有界な Goemans-Williamson 近似比を超える。
得られたデータセットは、QAOAパフォーマンスに関する経験的バウンダリを確立するためのベンチマークとして提示される。
論文 参考訳(メタデータ) (2021-02-12T23:12:09Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。