A deep implicit-explicit minimizing movement method for option pricing in jump-diffusion models
- URL: http://arxiv.org/abs/2401.06740v2
- Date: Fri, 28 Mar 2025 18:25:23 GMT
- Title: A deep implicit-explicit minimizing movement method for option pricing in jump-diffusion models
- Authors: Emmanuil H. Georgoulis, Antonis Papapantoleon, Costas Smaragdakis,
- Abstract summary: We develop a novel deep learning approach for pricing European basket options written on assets that follow jump-diffusion dynamics.<n>The option pricing problem is formulated as a partial integro-differential equation, which is approximated via a new implicit-explicit minimizing movement time-stepping approach.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a novel deep learning approach for pricing European basket options written on assets that follow jump-diffusion dynamics. The option pricing problem is formulated as a partial integro-differential equation, which is approximated via a new implicit-explicit minimizing movement time-stepping approach, involving approximation by deep, residual-type Artificial Neural Networks (ANNs) for each time step. The integral operator is discretized via two different approaches: (a) a sparse-grid Gauss-Hermite approximation following localised coordinate axes arising from singular value decompositions, and (b) an ANN-based high-dimensional special-purpose quadrature rule. Crucially, the proposed ANN is constructed to ensure the appropriate asymptotic behavior of the solution for large values of the underlyings and also leads to consistent outputs with respect to a priori known qualitative properties of the solution. The performance and robustness with respect to the dimension of these methods are assessed in a series of numerical experiments involving the Merton jump-diffusion model, while a comparison with the deep Galerkin method and the deep BSDE solver with jumps further supports the merits of the proposed approach.
Related papers
- Generalized Gradient Norm Clipping & Non-Euclidean $(L_0,L_1)$-Smoothness [51.302674884611335]
This work introduces a hybrid non-Euclidean optimization method which generalizes norm clipping by combining steepest descent and conditional gradient approaches.<n>We discuss how to instantiate the algorithms for deep learning and demonstrate their properties on image classification and language modeling.
arXiv Detail & Related papers (2025-06-02T17:34:29Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - E$^2$M: Double Bounded $α$-Divergence Optimization for Tensor-based Discrete Density Estimation [3.9633191508712398]
We present a generalization of the expectation-maximization (EM) algorithm, called E$2M algorithm.<n>It circumvents this issue by first relaxing the optimization into minimization of a surrogate objective based on the Kullback-Leibler (KL) divergence.<n>Our approach offers flexible modeling for not only a variety of low-rank structures, including the CP, Tucker, and Train formats.
arXiv Detail & Related papers (2024-05-28T14:28:28Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Diffusion Stochastic Optimization for Min-Max Problems [33.73046548872663]
The optimistic gradient method is useful in addressing minimax optimization problems.
Motivated by the observation that the conventional version suffers from the need for a large batch size, we introduce and analyze a new formulation termed Samevareps-generativeOGOG.
arXiv Detail & Related papers (2024-01-26T01:16:59Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
Variational mixtures with full-covariance structures suffer from a quadratic growth due to variational parameters with the number of parameters.
We propose a method for constructing an initial Gaussian model approximation that can be used to warm-start variational inference.
arXiv Detail & Related papers (2023-07-12T19:30:04Z) - Stochastic Interpolants: A Unifying Framework for Flows and Diffusions [16.95541777254722]
A class of generative models that unifies flow-based and diffusion-based methods is introduced.
These models extend the framework proposed in Albergo & VandenEijnden (2023), enabling the use of a broad class of continuous-time processes called stochastic interpolants'
These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way.
arXiv Detail & Related papers (2023-03-15T17:43:42Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
We develop a constructive approach based on Deep Neural Networks for the efficient approximation of the parameter-to-solution map.
In particular, we consider parametrized advection-diffusion PDEs, and we test the methodology in the presence of strong transport fields.
arXiv Detail & Related papers (2021-03-10T17:01:42Z) - Mean-Field Approximation to Gaussian-Softmax Integral with Application
to Uncertainty Estimation [23.38076756988258]
We propose a new single-model based approach to quantify uncertainty in deep neural networks.
We use a mean-field approximation formula to compute an analytically intractable integral.
Empirically, the proposed approach performs competitively when compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-06-13T07:32:38Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Model Reduction and Neural Networks for Parametric PDEs [9.405458160620533]
We develop a framework for data-driven approximation of input-output maps between infinite-dimensional spaces.
The proposed approach is motivated by the recent successes of neural networks and deep learning.
For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology.
arXiv Detail & Related papers (2020-05-07T00:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.