論文の概要: LightHouse: A Survey of AGI Hallucination
- arxiv url: http://arxiv.org/abs/2401.06792v2
- Date: Wed, 17 Jan 2024 04:40:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 19:11:52.382126
- Title: LightHouse: A Survey of AGI Hallucination
- Title(参考訳): LightHouse: AGI幻覚に関する調査
- Authors: Feng Wang
- Abstract要約: 幻覚はAI研究の発展を妨げるボトルネックである。
AGI(Artificial General Intelligence)の幻覚研究に多大な研究努力が注がれている。
我々は,AGIにおける幻覚の鳥眼図を提示し,AGI幻覚に関する現在の研究成果を要約し,今後の研究に向けていくつかの方向性を提案する。
- 参考スコア(独自算出の注目度): 2.8519768339207356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the development of artificial intelligence, large-scale models have
become increasingly intelligent. However, numerous studies indicate that
hallucinations within these large models are a bottleneck hindering the
development of AI research. In the pursuit of achieving strong artificial
intelligence, a significant volume of research effort is being invested in the
AGI (Artificial General Intelligence) hallucination research. Previous
explorations have been conducted in researching hallucinations within LLMs
(Large Language Models). As for multimodal AGI, research on hallucinations is
still in an early stage. To further the progress of research in the domain of
hallucinatory phenomena, we present a bird's eye view of hallucinations in AGI,
summarizing the current work on AGI hallucinations and proposing some
directions for future research.
- Abstract(参考訳): 人工知能の発展に伴い、大規模モデルはますますインテリジェントになっている。
しかし、多くの研究は、これらの大きなモデル内の幻覚がAI研究の発展を妨げるボトルネックであることを示している。
強力な人工知能を達成するために、AGI(Artificial General Intelligence)幻覚研究に多大な研究努力が注がれている。
LLM (Large Language Models) における幻覚の研究は, 従来から行われている。
マルチモーダルAGIについては、幻覚の研究はまだ初期段階にある。
幻覚現象の領域における研究の進展をさらに進めるため,AGIにおける幻覚の鳥眼図を提示し,現在のAGI幻覚研究を要約し,今後の研究に向けていくつかの方向性を提案する。
関連論文リスト
- ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
大規模言語モデル (LLM) は、様々な領域や広範囲のアプリケーションにまたがる、長い形式の質問応答タスクにおいて幻覚を示す。
現在の幻覚検出と緩和データセットはドメインやサイズによって制限されている。
本稿では,幻覚アノテーションデータセットを同時に,段階的にスケールアップする反復的自己学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T17:56:38Z) - VideoHallucer: Evaluating Intrinsic and Extrinsic Hallucinations in Large Video-Language Models [59.05674402770661]
本稿では,大規模ビデオ言語モデル(LVLM)における幻覚検出のための最初の総合的ベンチマークであるVideoHallucerを紹介する。
VideoHallucerは幻覚を2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-06-24T06:21:59Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - AIGCs Confuse AI Too: Investigating and Explaining Synthetic Image-induced Hallucinations in Large Vision-Language Models [37.04195231708092]
我々は、AI合成画像によるLVLM(Large Vision-Language Models)の悪化する幻覚現象を強調した。
注目すべきは、AIGC textbfhallucination biasに光を当てることである: 合成画像によって誘導される物体幻覚は、より多い量で特徴づけられる。
我々は,Q-formerとLinearプロジェクタについて検討した結果,合成画像は視覚投射後のトークン偏差を呈し,幻覚バイアスを増幅することがわかった。
論文 参考訳(メタデータ) (2024-03-13T13:56:34Z) - On Early Detection of Hallucinations in Factual Question Answering [4.76359068115052]
幻覚は依然として ユーザーの信頼を得るための大きな障害です
本研究では、モデル生成に関連するアーティファクトが、生成が幻覚を含むことを示すヒントを提供することができるかどうかを探索する。
以上の結果から,これらのアーティファクトの分布は,ハロゲン化世代と非ハロゲン化世代の違いが示唆された。
論文 参考訳(メタデータ) (2023-12-19T14:35:04Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
機械生成データに固有の幻覚は未発見のままである。
本稿では,クロスチェックパラダイムに基づく新しい幻覚検出・除去フレームワークであるHaluciDoctorを提案する。
LLaVAに比べて44.6%の幻覚を緩和し,競争性能を維持した。
論文 参考訳(メタデータ) (2023-11-22T04:52:58Z) - A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions [40.79317187623401]
大規模言語モデル(LLM)の出現は、自然言語処理(NLP)において大きなブレークスルーとなった。
LLMは幻覚を起こす傾向があり、可視だが非現実的な内容を生成する。
この現象は、実世界の情報検索システムにおけるLCMの信頼性に対する重大な懸念を引き起こす。
論文 参考訳(メタデータ) (2023-11-09T09:25:37Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z) - Cognitive Mirage: A Review of Hallucinations in Large Language Models [10.86850565303067]
各種テキスト生成タスクから幻覚の新しい分類法を提案する。
理論的洞察、検出方法、改善アプローチを提供する。
幻覚が注目される中、我々は関連研究の進捗状況の更新を続行する。
論文 参考訳(メタデータ) (2023-09-13T08:33:09Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。