Quantum-enhanced neural networks for quantum many-body simulations
- URL: http://arxiv.org/abs/2501.12130v1
- Date: Tue, 21 Jan 2025 13:44:52 GMT
- Title: Quantum-enhanced neural networks for quantum many-body simulations
- Authors: Zongkang Zhang, Ying Li, Xiaosi Xu,
- Abstract summary: We propose a quantum-neural hybrid framework that combines parameterized quantum circuits with neural networks to model quantum many-body wavefunctions.
Numerical simulations demonstrate the scalability and accuracy of the hybrid ansatz in spin systems and quantum chemistry problems.
- Score: 3.8145527526052576
- License:
- Abstract: Neural quantum states (NQS) have gained prominence in variational quantum Monte Carlo methods in approximating ground-state wavefunctions. Despite their success, they face limitations in optimization, scalability, and expressivity in addressing certain problems. In this work, we propose a quantum-neural hybrid framework that combines parameterized quantum circuits with neural networks to model quantum many-body wavefunctions. This approach combines the efficient sampling and optimization capabilities of autoregressive neural networks with the enhanced expressivity provided by quantum circuits. Numerical simulations demonstrate the scalability and accuracy of the hybrid ansatz in spin systems and quantum chemistry problems. Our results reveal that the hybrid method achieves notably lower relative energy compared to standalone NQS. These findings underscore the potential of quantum-neural hybrid methods for tackling challenging problems in quantum many-body simulations.
Related papers
- Quantum simulation of a qubit with non-Hermitian Hamiltonian [0.0]
We employ a fixed-depth variational circuit to circumvent limitations of iterative quantum simulation methods.
The results underscore the potential for variational quantum circuits and machine learning to push the boundaries of quantum simulation.
arXiv Detail & Related papers (2025-02-19T17:42:08Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Variational Quantum-Neural Hybrid Error Mitigation [6.555128824546528]
Quantum error mitigation (QEM) is crucial for obtaining reliable results on quantum computers.
We show how variational quantum-neural hybrid eigensolver (VQNHE) algorithm is inherently noise resilient with a unique QEM capacity.
arXiv Detail & Related papers (2021-12-20T08:07:58Z) - Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy
Quantum Computers [0.0]
We show that quantum dissipative dynamics can be simulated efficiently across coherent-to-incoherent regimes.
This work provides a new direction for quantum advantage in the NISQ era.
arXiv Detail & Related papers (2021-06-24T10:37:37Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.