論文の概要: EHRAgent: Code Empowers Large Language Models for Few-shot Complex Tabular Reasoning on Electronic Health Records
- arxiv url: http://arxiv.org/abs/2401.07128v3
- Date: Fri, 04 Oct 2024 05:56:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 15:08:21.137451
- Title: EHRAgent: Code Empowers Large Language Models for Few-shot Complex Tabular Reasoning on Electronic Health Records
- Title(参考訳): EHRAgent: 電子健康記録に基づく複雑な語彙推論のための大規模言語モデル
- Authors: Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu Zhang, Hang Wu, Yuanda Zhu, Joyce Ho, Carl Yang, May D. Wang,
- Abstract要約: 大規模言語モデル(LLM)は、計画とツールの利用において例外的な能力を示した。
コードインタフェースを備えたLLMエージェントであるEHRAgentを提案し,マルチタブラル推論のためのコードの自動生成と実行を行う。
- 参考スコア(独自算出の注目度): 47.5632532642591
- License:
- Abstract: Large language models (LLMs) have demonstrated exceptional capabilities in planning and tool utilization as autonomous agents, but few have been developed for medical problem-solving. We propose EHRAgent, an LLM agent empowered with a code interface, to autonomously generate and execute code for multi-tabular reasoning within electronic health records (EHRs). First, we formulate an EHR question-answering task into a tool-use planning process, efficiently decomposing a complicated task into a sequence of manageable actions. By integrating interactive coding and execution feedback, EHRAgent learns from error messages and improves the originally generated code through iterations. Furthermore, we enhance the LLM agent by incorporating long-term memory, which allows EHRAgent to effectively select and build upon the most relevant successful cases from past experiences. Experiments on three real-world multi-tabular EHR datasets show that EHRAgent outperforms the strongest baseline by up to 29.6% in success rate. EHRAgent leverages the emerging few-shot learning capabilities of LLMs, enabling autonomous code generation and execution to tackle complex clinical tasks with minimal demonstrations.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自律的なエージェントとしての計画とツール利用において、例外的な能力を示しているが、医療的問題解決のために開発されているものはほとんどない。
電子健康記録(EHR)内の多言語推論のためのコード生成と実行を自律的に行うLLMエージェントであるEHRAgentを提案する。
まず、EHR質問応答タスクをツール利用計画プロセスに定式化し、複雑なタスクを管理可能な一連のアクションに効率的に分解する。
インタラクティブなコーディングと実行フィードバックを統合することで、EHRAgentはエラーメッセージから学び、イテレーションを通じて生成されたコードを改善する。
さらに,EHRAgentが過去の経験から最も有効な事例を効果的に選択・構築できるように,長期記憶を組み込むことによりLLMエージェントを強化した。
3つの実世界のマルチタブラルEHRデータセットの実験では、EHRAgentは成功率の29.6%で最強のベースラインを上回っている。
EHRAgentは、LLMの新たな数発の学習機能を活用し、最小限のデモで、自律的なコード生成と実行によって複雑な臨床タスクに取り組むことができる。
関連論文リスト
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - MMedAgent: Learning to Use Medical Tools with Multi-modal Agent [27.314055140281432]
本報告では,医療分野向けに設計された最初のエージェントである textbfMulti-modal textbfMedical textbfAgent (MMedAgent) を紹介する。
MMedAgentは、最先端のオープンソース手法やクローズドソースモデルであるGPT-4oと比較して、様々な医療タスクにおいて優れた性能を発揮することを示す総合的な実験である。
論文 参考訳(メタデータ) (2024-07-02T17:58:23Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
オープンソースのLarge Language Models(LLM)は、さまざまなNLPタスクで大きな成功を収めていますが、エージェントとして振る舞う場合、それでもAPIベースのモデルよりもはるかに劣っています。
本稿では,(1) エージェント学習コーパスを,(1) エージェント学習データの分布から大きくシフトするエージェント推論と,(2) エージェントタスクが必要とする能力に異なる学習速度を示すエージェント学習コーパスと,(3) 幻覚を導入することでエージェント能力を改善する際の副作用について述べる。
本稿では,エージェントのためのFLANモデルを効果的に構築するためのエージェントFLANを提案する。
論文 参考訳(メタデータ) (2024-03-19T16:26:10Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
大規模言語モデル(LLM)エージェントとケースベース推論(CBR)を利用した新しいフレームワークであるDS-Agentを提案する。
開発段階では、DS-AgentはCBRフレームワークに従い、自動イテレーションパイプラインを構築する。
デプロイメントの段階では、DS-Agentは、シンプルなCBRパラダイムで低リソースのデプロイメントステージを実装し、LCMの基本能力に対する需要を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-27T12:26:07Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。