論文の概要: MMedAgent: Learning to Use Medical Tools with Multi-modal Agent
- arxiv url: http://arxiv.org/abs/2407.02483v2
- Date: Sat, 05 Oct 2024 06:36:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 18:00:22.362351
- Title: MMedAgent: Learning to Use Medical Tools with Multi-modal Agent
- Title(参考訳): MMedAgent:マルチモーダルエージェントによる医療ツールの活用を学ぶ
- Authors: Binxu Li, Tiankai Yan, Yuanting Pan, Jie Luo, Ruiyang Ji, Jiayuan Ding, Zhe Xu, Shilong Liu, Haoyu Dong, Zihao Lin, Yixin Wang,
- Abstract要約: 本報告では,医療分野向けに設計された最初のエージェントである textbfMulti-modal textbfMedical textbfAgent (MMedAgent) を紹介する。
MMedAgentは、最先端のオープンソース手法やクローズドソースモデルであるGPT-4oと比較して、様々な医療タスクにおいて優れた性能を発揮することを示す総合的な実験である。
- 参考スコア(独自算出の注目度): 27.314055140281432
- License:
- Abstract: Multi-Modal Large Language Models (MLLMs), despite being successful, exhibit limited generality and often fall short when compared to specialized models. Recently, LLM-based agents have been developed to address these challenges by selecting appropriate specialized models as tools based on user inputs. However, such advancements have not been extensively explored within the medical domain. To bridge this gap, this paper introduces the first agent explicitly designed for the medical field, named \textbf{M}ulti-modal \textbf{Med}ical \textbf{Agent} (MMedAgent). We curate an instruction-tuning dataset comprising six medical tools solving seven tasks across five modalities, enabling the agent to choose the most suitable tools for a given task. Comprehensive experiments demonstrate that MMedAgent achieves superior performance across a variety of medical tasks compared to state-of-the-art open-source methods and even the closed-source model, GPT-4o. Furthermore, MMedAgent exhibits efficiency in updating and integrating new medical tools. Codes and models are all available.
- Abstract(参考訳): MLLM(Multi-Modal Large Language Models)は、成功しているにもかかわらず、限られた一般性を示し、特殊モデルと比較してしばしば不足する。
近年,LSMをベースとしたエージェントが,ユーザ入力に基づくツールとして,適切な特化モデルを選択することで,これらの課題に対処するために開発されている。
しかし、これらの進歩は医学領域内では広く研究されていない。
このギャップを埋めるために,本論文では,医療分野向けに明示的に設計された最初のエージェントである「textbf{M}ulti-modal \textbf{Med}ical \textbf{Agent}」(MMedAgent)を紹介する。
我々は,5つのモードで7つのタスクを解く6つの医療ツールからなる指導訓練データセットをキュレートし,与えられたタスクに最適なツールをエージェントが選択できるようにする。
MMedAgentは、最先端のオープンソース手法やクローズドソースモデルであるGPT-4oと比較して、様々な医療タスクにおいて優れた性能を発揮することを示す総合的な実験である。
さらに、MMedAgentは、新しい医療ツールの更新と統合の効率性を示す。
コードとモデルはすべて利用可能である。
関連論文リスト
- Parameter-Efficient Fine-Tuning Medical Multimodal Large Language Models for Medical Visual Grounding [9.144030136201476]
マルチモーダル大言語モデル(MLLM)は、LLMの優れたテキスト理解能力を継承し、これらの機能をマルチモーダルシナリオに拡張する。
これらのモデルは、マルチモーダルタスクの一般領域において優れた結果をもたらす。
しかし,医療分野では,医療用MLLMの開発に多大なトレーニングコストと広範な医療データを必要とすることが課題となっている。
論文 参考訳(メタデータ) (2024-10-31T11:07:26Z) - FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models [54.09244105445476]
本研究は,フェデレート・ラーニング・フレームワーク内で医療基盤モデルを拡張するための新しい知識注入手法であるFedKIMを紹介する。
FedKIMは軽量なローカルモデルを活用して、プライベートデータから医療知識を抽出し、この知識を集中基盤モデルに統合する。
7つのモードで12タスクを対象に実験を行い,FedKIMの有効性について検討した。
論文 参考訳(メタデータ) (2024-08-17T15:42:29Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは進化的アルゴリズムによって専門家エージェントをマルチエージェントシステムに自動的に拡張する汎用的な手法である。
EvoAgentは複数の専門家エージェントを自動生成し,LLMエージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
大規模言語モデル(LLM)はそのようなエージェントを構築するための有望な基盤と考えられている。
我々は、自己進化能力を備えた一般機能 LLM ベースのエージェントを構築するための第一歩を踏み出す。
我々はAgentGymを提案する。AgentGymは、幅広い、リアルタイム、ユニフォーマット、並行エージェント探索のための様々な環境とタスクを特徴とする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-06T15:15:41Z) - MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making [45.74980058831342]
MDAgents(Medical Decision-making Agents)と呼ばれる新しいマルチエージェントフレームワークを導入する。
割り当てられた単独またはグループの共同作業構造は、実際の医療決定過程をエミュレートして、手元にある医療タスクに合わせて調整される。
MDAgentsは医療知識の理解を必要とするタスクに関する10のベンチマークのうち7つのベンチマークで最高のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-04-22T06:30:05Z) - Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models [17.643421997037514]
差別的, 生成的両マルチモーダル医療課題に対処する新しい枠組みを提案する。
Med-MoEの学習は、マルチモーダル医療アライメント、命令チューニングとルーティング、ドメイン固有のMoEチューニングの3つのステップで構成されている。
我々のモデルは最先端のベースラインに匹敵する性能を達成できる。
論文 参考訳(メタデータ) (2024-04-16T02:35:17Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - EHRAgent: Code Empowers Large Language Models for Few-shot Complex Tabular Reasoning on Electronic Health Records [47.5632532642591]
大規模言語モデル(LLM)は、計画とツールの利用において例外的な能力を示した。
コードインタフェースを備えたLLMエージェントであるEHRAgentを提案し,マルチタブラル推論のためのコードの自動生成と実行を行う。
論文 参考訳(メタデータ) (2024-01-13T18:09:05Z) - MedAgents: Large Language Models as Collaborators for Zero-shot Medical Reasoning [35.804520192679874]
大規模言語モデル(LLM)は医療や医療において重大な障壁に直面している。
MedAgentsは医療分野のための新しい多分野連携フレームワークである。
私たちの研究は、現実世界のシナリオに適用可能なゼロショット設定に焦点を当てています。
論文 参考訳(メタデータ) (2023-11-16T11:47:58Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。