論文の概要: A Data-driven Resilience Framework of Directionality Configuration based
on Topological Credentials in Road Networks
- arxiv url: http://arxiv.org/abs/2401.07371v1
- Date: Sun, 14 Jan 2024 21:22:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 18:31:50.443633
- Title: A Data-driven Resilience Framework of Directionality Configuration based
on Topological Credentials in Road Networks
- Title(参考訳): 道路網のトポロジ的クレデンシャルに基づく指向性構成のためのデータ駆動型レジリエンスフレームワーク
- Authors: H M Imran Kays, Khondhaker Al Momin, K.K. "Muralee" Muraleetharan,
Arif Mohaimin Sadri
- Abstract要約: 本稿では,最適化に基づくBrute Force検索手法と意思決定支援フレームワークを統合した新しい道路再構成手法を提案する。
提案フレームワークは、最適化プロセス中に生成されたシナリオからの入力を組み合わせ、マルチ基準決定分析アプローチを取り入れている。
道路構成のランク付けには、リッジ回帰などの機械学習アルゴリズムを使用して、各基準に対する最適な重みを決定する。
- 参考スコア(独自算出の注目度): 0.5154704494242526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Roadway reconfiguration is a crucial aspect of transportation planning,
aiming to enhance traffic flow, reduce congestion, and improve overall road
network performance with existing infrastructure and resources. This paper
presents a novel roadway reconfiguration technique by integrating optimization
based Brute Force search approach and decision support framework to rank
various roadway configurations for better performance. The proposed framework
incorporates a multi-criteria decision analysis (MCDA) approach, combining
input from generated scenarios during the optimization process. By utilizing
data from optimization, the model identifies total betweenness centrality
(TBC), system travel time (STT), and total link traffic flow (TLTF) as the most
influential decision variables. The developed framework leverages graph theory
to model the transportation network topology and apply network science metrics
as well as stochastic user equilibrium traffic assignment to assess the impact
of each roadway configuration on the overall network performance. To rank the
roadway configurations, the framework employs machine learning algorithms, such
as ridge regression, to determine the optimal weights for each criterion (i.e.,
TBC, STT, TLTF). Moreover, the network-based analysis ensures that the selected
configurations not only optimize individual roadway segments but also enhance
system-level efficiency, which is particularly helpful as the increasing
frequency and intensity of natural disasters and other disruptive events
underscore the critical need for resilient transportation networks. By
integrating multi-criteria decision analysis, machine learning, and network
science metrics, the proposed framework would enable transportation planners to
make informed and data-driven decisions, leading to more sustainable,
efficient, and resilient roadway configurations.
- Abstract(参考訳): 道路再設定は交通流の向上,渋滞の低減,既存のインフラや資源による道路網全体の性能向上を目的とした交通計画の重要な側面である。
本稿では,最適化に基づくBrute Force検索手法と意思決定支援フレームワークを統合して,道路構成のランク付けを行い,性能向上を図る。
提案フレームワークは、最適化プロセス中に生成されたシナリオからの入力を組み合わせたマルチ基準決定分析(MCDA)アプローチを取り入れている。
最適化からのデータを利用することで,システム走行時間(stt)と全リンクトラヒックフロー(tltf)を最も影響力のある決定変数として識別する。
開発したフレームワークはグラフ理論を利用して交通ネットワークのトポロジをモデル化し,ネットワーク科学のメトリクスと確率的ユーザ均衡トラフィック割り当てを適用し,各道路構成が全体のネットワーク性能に与える影響を評価する。
道路構成のランク付けには、リッジ回帰などの機械学習アルゴリズムを使用し、各基準(TBC、STT、TLTF)の最適な重みを決定する。
さらに、ネットワークベース分析により、選択された構成が個々の道路セグメントを最適化するだけでなく、システムレベルの効率を向上させることが保証される。
マルチ基準の意思決定分析、機械学習、ネットワークサイエンスメトリクスを統合することで、提案されたフレームワークは、交通計画者が情報とデータ駆動による意思決定を可能にし、より持続可能な、効率的でレジリエントな道路構成を実現する。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - DynamicRouteGPT: A Real-Time Multi-Vehicle Dynamic Navigation Framework Based on Large Language Models [13.33340860174857]
複雑な交通環境におけるリアルタイムな動的経路計画は、交通量の変化や信号待ち時間といった課題を提示する。
DijkstraやA*のような従来の静的ルーティングアルゴリズムは最短経路を計算するが、しばしば動的条件下で失敗する。
本稿では,実時間動的経路計画のための因果推論に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-26T11:19:58Z) - An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems [11.655502119510134]
自動車の占有率が高い複雑な都市道路網は、しばしば交通渋滞に直面している。
現在の交通信号管理システムは人為的な意思決定に依存しており、多様な交通パターンに適応できない可能性がある。
オフラインのメタブラックボックス最適化を用いて,そのような設計コンポーネントの最適化を定式化するための,新規で実用的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-14T06:57:58Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - A Deep Reinforcement Learning Approach for Adaptive Traffic Routing in
Next-gen Networks [1.1586742546971471]
次世代ネットワークは、トラフィックダイナミクスに基づいたネットワーク構成を自動化し、適応的に調整する必要がある。
交通政策を決定する伝統的な手法は、通常は手作りのプログラミング最適化とアルゴリズムに基づいている。
我々は適応的なトラフィックルーティングのための深層強化学習(DRL)アプローチを開発する。
論文 参考訳(メタデータ) (2024-02-07T01:48:29Z) - Eco-Driving Control of Connected and Automated Vehicles using Neural
Network based Rollout [0.0]
接続された自動運転車は、エネルギー消費を最小化する可能性がある。
既存の決定論的手法は、一般に高い計算とメモリ要求に悩まされる。
本研究ではニューラルネットワークを介して実装された階層型マルチ水平最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-16T23:13:51Z) - An ASP Framework for Efficient Urban Traffic Optimization [0.0]
本稿では,数百台の車両による大規模道路網における交通流を効率的にシミュレートし,最適化する枠組みを提案する。
このフレームワークは、Answer Set Programming (ASP)エンコーディングを利用して、ネットワーク内の車両の動きを正式に記述する。
これにより、ネットワーク内の車両の経路を最適化し、関連するメトリクスの幅を減らすことができる。
論文 参考訳(メタデータ) (2022-08-05T10:50:38Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
本稿では,ユーザ要求の変化に応じて,ネットワーク内の各セルの構成パラメータを自動的に調整するポリシの学習方法について検討する。
私たちのソリューションは、オフライン学習のための既存の方法を組み合わせて、この文脈で生じる重要な課題を克服する原則的な方法でそれらを適応します。
論文 参考訳(メタデータ) (2021-11-11T11:31:20Z) - Optimal transport in multilayer networks [68.8204255655161]
本稿では,各層上の最適フローが,コストの最小化に寄与するモデルを提案する。
アプリケーションとして,各層が異なる輸送システムに関連付けられている交通ネットワークを考察する。
この結果の例をボルドー市とバスと路面電車の2層ネットワークで示し、ある状況下では路面電車網の存在が道路網の交通を著しく覆い隠している。
論文 参考訳(メタデータ) (2021-06-14T07:33:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。