論文の概要: An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems
- arxiv url: http://arxiv.org/abs/2408.07327v1
- Date: Wed, 14 Aug 2024 06:57:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:13:57.284914
- Title: An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems
- Title(参考訳): 都市交通光管理システムの適応設計のためのオフラインメタブラックボックス最適化フレームワーク
- Authors: Taeyoung Yun, Kanghoon Lee, Sujin Yun, Ilmyung Kim, Won-Woo Jung, Min-Cheol Kwon, Kyujin Choi, Yoohyeon Lee, Jinkyoo Park,
- Abstract要約: 自動車の占有率が高い複雑な都市道路網は、しばしば交通渋滞に直面している。
現在の交通信号管理システムは人為的な意思決定に依存しており、多様な交通パターンに適応できない可能性がある。
オフラインのメタブラックボックス最適化を用いて,そのような設計コンポーネントの最適化を定式化するための,新規で実用的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 11.655502119510134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Complex urban road networks with high vehicle occupancy frequently face severe traffic congestion. Designing an effective strategy for managing multiple traffic lights plays a crucial role in managing congestion. However, most current traffic light management systems rely on human-crafted decisions, which may not adapt well to diverse traffic patterns. In this paper, we delve into two pivotal design components of the traffic light management system that can be dynamically adjusted to various traffic conditions: phase combination and phase time allocation. While numerous studies have sought an efficient strategy for managing traffic lights, most of these approaches consider a fixed traffic pattern and are limited to relatively small road networks. To overcome these limitations, we introduce a novel and practical framework to formulate the optimization of such design components using an offline meta black-box optimization. We then present a simple yet effective method to efficiently find a solution for the aforementioned problem. In our framework, we first collect an offline meta dataset consisting of pairs of design choices and corresponding congestion measures from various traffic patterns. After collecting the dataset, we employ the Attentive Neural Process (ANP) to predict the impact of the proposed design on congestion across various traffic patterns with well-calibrated uncertainty. Finally, Bayesian optimization, with ANP as a surrogate model, is utilized to find an optimal design for unseen traffic patterns through limited online simulations. Our experiment results show that our method outperforms state-of-the-art baselines on complex road networks in terms of the number of waiting vehicles. Surprisingly, the deployment of our method into a real-world traffic system was able to improve traffic throughput by 4.80\% compared to the original strategy.
- Abstract(参考訳): 自動車の占有率が高い複雑な都市道路網は、しばしば交通渋滞に直面している。
複数の信号機を管理するための効果的な戦略を設計することは、混雑を管理する上で重要な役割を担っている。
しかし、現在の交通信号管理システムは人為的な意思決定に依存しており、多様な交通パターンに適応できない可能性がある。
本稿では,様々な交通条件に合わせて動的に調整できる交通信号管理システムの2つの重要な設計要素を探索する。
多くの研究が信号を管理するための効率的な戦略を模索しているが、これらの手法の多くは固定的な交通パターンを考慮し、比較的小さな道路網に限られている。
これらの制約を克服するために、オフラインのメタブラックボックス最適化を用いて、そのような設計コンポーネントの最適化を定式化するための、新しく実用的なフレームワークを導入する。
次に、上記の問題の解を効率的に見つけるための、単純で効果的な方法を提案する。
本フレームワークでは、まず、設計選択のペアと、各種トラフィックパターンからの渋滞対策からなるオフラインメタデータセットを収集する。
データセットを収集した後、Attentive Neural Process (ANP) を用いて、適切に校正された不確実性のある様々なトラフィックパターンにわたる渋滞に対する提案された設計の影響を予測する。
最後に、ANPを代理モデルとしたベイジアン最適化を用いて、限定的なオンラインシミュレーションにより、目に見えない交通パターンの最適設計を求める。
提案手法は,待ち車数の観点から,複雑な道路網上での最先端のベースラインよりも優れていることを示す。
驚いたことに,本手法を現実の交通システムに展開することで,当初の戦略に比べてトラフィックスループットを4.80 %向上することができた。
関連論文リスト
- Scalable Multi-Objective Optimization for Robust Traffic Signal Control in Uncertain Environments [7.504173535502228]
本稿では,動的かつ不確実な都市環境におけるロバストな交通信号制御のための,スケーラブルな多目的最適化手法を提案する。
都市交通の不確実性に対処する適応ハイブリッド多目的最適化アルゴリズム(AHMOA)を提案する。
シミュレーションはマンハッタン、パリ、サンパウロ、イスタンブールなど様々な都市で行われている。
論文 参考訳(メタデータ) (2024-09-20T10:42:16Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - An ASP Framework for Efficient Urban Traffic Optimization [0.0]
本稿では,数百台の車両による大規模道路網における交通流を効率的にシミュレートし,最適化する枠組みを提案する。
このフレームワークは、Answer Set Programming (ASP)エンコーディングを利用して、ネットワーク内の車両の動きを正式に記述する。
これにより、ネットワーク内の車両の経路を最適化し、関連するメトリクスの幅を減らすことができる。
論文 参考訳(メタデータ) (2022-08-05T10:50:38Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
本稿では,交差点の混雑状況に応じて交通信号を調整するDRLに基づく信号制御システムを提案する。
交差点の後方の道路での渋滞に対処するため,道路ネットワーク上で車両のバランスをとるために再ルート手法を用いた。
論文 参考訳(メタデータ) (2022-06-28T02:46:20Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Integrated Decision and Control at Multi-Lane Intersections with Mixed
Traffic Flow [6.233422723925688]
本稿では,混在交通流を伴う複雑な交差点を扱うための学習に基づくアルゴリズムを提案する。
まず、学習過程における緑と赤の異なる速度モデルについて検討し、有限状態マシンを用いて異なるモードの光変換を扱う。
次に, 車両, 信号機, 歩行者, 自転車にそれぞれ異なる種類の距離制約を設計し, 制約された最適制御問題をフォーミュレートする。
論文 参考訳(メタデータ) (2021-08-30T07:55:32Z) - Optimal transport in multilayer networks [68.8204255655161]
本稿では,各層上の最適フローが,コストの最小化に寄与するモデルを提案する。
アプリケーションとして,各層が異なる輸送システムに関連付けられている交通ネットワークを考察する。
この結果の例をボルドー市とバスと路面電車の2層ネットワークで示し、ある状況下では路面電車網の存在が道路網の交通を著しく覆い隠している。
論文 参考訳(メタデータ) (2021-06-14T07:33:09Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。