論文の概要: Optimising network interactions through device agnostic models
- arxiv url: http://arxiv.org/abs/2401.07387v1
- Date: Sun, 14 Jan 2024 22:46:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 18:33:33.047431
- Title: Optimising network interactions through device agnostic models
- Title(参考訳): デバイス非依存モデルによるネットワークインタラクションの最適化
- Authors: Luca Manneschi, Ian T. Vidamour, Kilian D. Stenning, Jack C. Gartside,
Charles Swindells, Guru Venkat, David Griffin, Susan Stepney, Will R.
Branford, Thomas Hayward, Matt O Ellis, Eleni Vasilaki
- Abstract要約: 物理的に実装されたニューラルネットワークは、デバイス固有の物理的特性を計算ツールとして活用することにより、ディープラーニングモデルの性能を達成する可能性を秘めている。
完全にデータ駆動方式で動的物理システムとの相互作用を最適化するための普遍的な枠組みを定式化する。
我々の研究は、物理的に定義されたニューラルネットワークの展開を成功させるために、システム性を正確に捉えることの重要性を強調しながら、相互作用する動的デバイスのシミュレーションと物理実装を通じてフレームワークの適用性を実証する。
- 参考スコア(独自算出の注目度): 2.538490265556881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physically implemented neural networks hold the potential to achieve the
performance of deep learning models by exploiting the innate physical
properties of devices as computational tools. This exploration of physical
processes for computation requires to also consider their intrinsic dynamics,
which can serve as valuable resources to process information. However, existing
computational methods are unable to extend the success of deep learning
techniques to parameters influencing device dynamics, which often lack a
precise mathematical description. In this work, we formulate a universal
framework to optimise interactions with dynamic physical systems in a fully
data-driven fashion. The framework adopts neural stochastic differential
equations as differentiable digital twins, effectively capturing both
deterministic and stochastic behaviours of devices. Employing differentiation
through the trained models provides the essential mathematical estimates for
optimizing a physical neural network, harnessing the intrinsic temporal
computation abilities of its physical nodes. To accurately model real devices'
behaviours, we formulated neural-SDE variants that can operate under a variety
of experimental settings. Our work demonstrates the framework's applicability
through simulations and physical implementations of interacting dynamic
devices, while highlighting the importance of accurately capturing system
stochasticity for the successful deployment of a physically defined neural
network.
- Abstract(参考訳): 物理的に実装されたニューラルネットワークは、デバイス固有の物理的特性を計算ツールとして活用することにより、ディープラーニングモデルの性能を達成する可能性を秘めている。
この計算のための物理過程の探索は、情報を処理する貴重な資源となる固有の力学も考慮する必要がある。
しかし、既存の計算手法は、しばしば正確な数学的記述を欠いているデバイス力学に影響を与えるパラメータにディープラーニング技術の成功を拡張できない。
本研究では,動的物理システムとのインタラクションを完全にデータ駆動方式で最適化するための普遍的なフレームワークを定式化する。
このフレームワークは、神経確率微分方程式を微分可能なデジタル双対として採用し、デバイスの決定論的および確率的両方の振る舞いを効果的にキャプチャする。
トレーニングされたモデルによる微分の利用は、物理ニューラルネットワークの最適化に不可欠な数学的推定を提供し、その物理ノードの固有の時間計算能力を活用する。
実際のデバイスの動作を正確にモデル化するために,様々な実験環境で動作可能なニューラルsde変種を定式化した。
本研究は、物理的に定義されたニューラルネットワークの展開を成功させる上で、システム確率を正確に捉えることの重要性を強調しながら、シミュレーションと相互作用する動的デバイスの物理的実装を通じて、フレームワークの適用性を示す。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Multi-fidelity physics constrained neural networks for dynamical systems [16.6396704642848]
マルチスケール物理制約ニューラルネットワーク(MSPCNN)を提案する。
MSPCNNは、異なるレベルの忠実度を持つデータを統一された潜在空間に組み込む新しい手法を提供する。
従来の手法とは異なり、MSPCNNは予測モデルをトレーニングするために複数の忠実度データを使用する。
論文 参考訳(メタデータ) (2024-02-03T05:05:26Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
複雑なシステム力学の離散時間シミュレーション表現を学習する可能性について検討する。
この結果から,本アルゴリズムは,意味のあるイベントを持つ複数のフィールドにおいて,複雑なネットワークダイナミクスをデータ効率よくキャプチャできることがわかった。
論文 参考訳(メタデータ) (2022-05-04T21:33:56Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
本研究では,高次元偏微分方程式を数値的に解くために,能動的学習を用いた学習データを生成するディープラーニングに基づくニューラル・ガレルキンスキームを提案する。
ニューラル・ガレルキンスキームはディラック・フランケル変分法に基づいて、残余を時間とともに最小化することで、ネットワークを訓練する。
提案したニューラル・ガレルキン・スキームの学習データ収集は,高次元におけるネットワークの表現力を数値的に実現するための鍵となる。
論文 参考訳(メタデータ) (2022-03-02T19:09:52Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Inverse-Dirichlet Weighting Enables Reliable Training of Physics
Informed Neural Networks [2.580765958706854]
我々は、深層ニューラルネットワークのトレーニング中に、スケール不均衡を伴うマルチスケールダイナミクスから生じる障害モードを記述し、治療する。
PINNは、物理方程式モデルとデータとのシームレスな統合を可能にする、一般的な機械学習テンプレートである。
逐次トレーニングを用いた逆モデリングでは,逆ディリクレ重み付けがPINNを破滅的忘れから保護することがわかった。
論文 参考訳(メタデータ) (2021-07-02T10:01:37Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Supervised training of spiking neural networks for robust deployment on
mixed-signal neuromorphic processors [2.6949002029513167]
混合信号アナログ/デジタル電子回路はスパイキングニューロンやシナプスを非常に高いエネルギー効率でエミュレートすることができる。
ミスマッチは、同一構成ニューロンとシナプスの効果的なパラメータの違いとして表現される。
ミスマッチに対する堅牢性や,その他の一般的なノイズ源を最大化することで,この課題に対処する,教師付き学習アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-12T09:20:49Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
微分可能なニューラルネットワークは、干渉することなく明示的なメモリで人工ニューラルネットワークを拡張する。
我々は、非常に効率的に訓練できるモデルを用いて、微分可能なニューラルネットワークの計算能力を実現する。
論文 参考訳(メタデータ) (2020-09-14T12:01:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。