論文の概要: Noise-Aware Training of Neuromorphic Dynamic Device Networks
- arxiv url: http://arxiv.org/abs/2401.07387v2
- Date: Mon, 28 Oct 2024 17:24:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:38:30.917701
- Title: Noise-Aware Training of Neuromorphic Dynamic Device Networks
- Title(参考訳): ニューロモルフィック・ダイナミック・デバイス・ネットワークのノイズ・アウェア・トレーニング
- Authors: Luca Manneschi, Ian T. Vidamour, Kilian D. Stenning, Charles Swindells, Guru Venkat, David Griffin, Lai Gui, Daanish Sonawala, Denis Donskikh, Dana Hariga, Susan Stepney, Will R. Branford, Jack C. Gartside, Thomas Hayward, Matthew O. A. Ellis, Eleni Vasilaki,
- Abstract要約: 本稿では,デバイスネットワークのトレーニングのための新しいノイズ認識手法を提案する。
我々のアプローチでは、時間とカスケード学習によるバックプロパゲーションを採用し、物理機器の時間的特性を効果的に活用することができる。
- 参考スコア(独自算出の注目度): 2.2691986670431197
- License:
- Abstract: Physical computing has the potential to enable widespread embodied intelligence by leveraging the intrinsic dynamics of complex systems for efficient sensing, processing, and interaction. While individual devices provide basic data processing capabilities, networks of interconnected devices can perform more complex and varied tasks. However, designing networks to perform dynamic tasks is challenging without physical models and accurate quantification of device noise. We propose a novel, noise-aware methodology for training device networks using Neural Stochastic Differential Equations (Neural-SDEs) as differentiable digital twins, accurately capturing the dynamics and associated stochasticity of devices with intrinsic memory. Our approach employs backpropagation through time and cascade learning, allowing networks to effectively exploit the temporal properties of physical devices. We validate our method on diverse networks of spintronic devices across temporal classification and regression benchmarks. By decoupling the training of individual device models from network training, our method reduces the required training data and provides a robust framework for programming dynamical devices without relying on analytical descriptions of their dynamics.
- Abstract(参考訳): 物理コンピューティングは、効率的なセンシング、処理、相互作用のために複雑なシステムの本質的なダイナミクスを活用することで、幅広いインボディードインテリジェンスを実現する可能性がある。
個々のデバイスが基本的なデータ処理機能を提供する一方で、相互接続されたデバイスのネットワークはより複雑で多様なタスクを実行できる。
しかし、物理モデルやデバイスノイズの正確な定量化がなければ、動的タスクを実行するネットワークを設計することは困難である。
本稿では,ニューラル確率微分方程式(Neural-SDE)をデジタル双対として用いたデバイスネットワークの学習手法を提案する。
我々のアプローチでは、時間とカスケード学習によるバックプロパゲーションを採用し、物理機器の時間的特性を効果的に活用することができる。
スピントロニクス装置の時間的分類と回帰のベンチマークによる多様なネットワーク上での手法の有効性を検証した。
ネットワークトレーニングから個々のデバイスモデルのトレーニングを分離することにより、必要なトレーニングデータを削減し、動的デバイスを動的にプログラムするための堅牢なフレームワークを提供する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Multi-fidelity physics constrained neural networks for dynamical systems [16.6396704642848]
マルチスケール物理制約ニューラルネットワーク(MSPCNN)を提案する。
MSPCNNは、異なるレベルの忠実度を持つデータを統一された潜在空間に組み込む新しい手法を提供する。
従来の手法とは異なり、MSPCNNは予測モデルをトレーニングするために複数の忠実度データを使用する。
論文 参考訳(メタデータ) (2024-02-03T05:05:26Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
複雑なシステム力学の離散時間シミュレーション表現を学習する可能性について検討する。
この結果から,本アルゴリズムは,意味のあるイベントを持つ複数のフィールドにおいて,複雑なネットワークダイナミクスをデータ効率よくキャプチャできることがわかった。
論文 参考訳(メタデータ) (2022-05-04T21:33:56Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
本研究では,高次元偏微分方程式を数値的に解くために,能動的学習を用いた学習データを生成するディープラーニングに基づくニューラル・ガレルキンスキームを提案する。
ニューラル・ガレルキンスキームはディラック・フランケル変分法に基づいて、残余を時間とともに最小化することで、ネットワークを訓練する。
提案したニューラル・ガレルキン・スキームの学習データ収集は,高次元におけるネットワークの表現力を数値的に実現するための鍵となる。
論文 参考訳(メタデータ) (2022-03-02T19:09:52Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Inverse-Dirichlet Weighting Enables Reliable Training of Physics
Informed Neural Networks [2.580765958706854]
我々は、深層ニューラルネットワークのトレーニング中に、スケール不均衡を伴うマルチスケールダイナミクスから生じる障害モードを記述し、治療する。
PINNは、物理方程式モデルとデータとのシームレスな統合を可能にする、一般的な機械学習テンプレートである。
逐次トレーニングを用いた逆モデリングでは,逆ディリクレ重み付けがPINNを破滅的忘れから保護することがわかった。
論文 参考訳(メタデータ) (2021-07-02T10:01:37Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Supervised training of spiking neural networks for robust deployment on
mixed-signal neuromorphic processors [2.6949002029513167]
混合信号アナログ/デジタル電子回路はスパイキングニューロンやシナプスを非常に高いエネルギー効率でエミュレートすることができる。
ミスマッチは、同一構成ニューロンとシナプスの効果的なパラメータの違いとして表現される。
ミスマッチに対する堅牢性や,その他の一般的なノイズ源を最大化することで,この課題に対処する,教師付き学習アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-12T09:20:49Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
微分可能なニューラルネットワークは、干渉することなく明示的なメモリで人工ニューラルネットワークを拡張する。
我々は、非常に効率的に訓練できるモデルを用いて、微分可能なニューラルネットワークの計算能力を実現する。
論文 参考訳(メタデータ) (2020-09-14T12:01:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。