論文の概要: DurFlex-EVC: Duration-Flexible Emotional Voice Conversion with Parallel
Generation
- arxiv url: http://arxiv.org/abs/2401.08095v1
- Date: Tue, 16 Jan 2024 03:39:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 15:15:38.877088
- Title: DurFlex-EVC: Duration-Flexible Emotional Voice Conversion with Parallel
Generation
- Title(参考訳): DurFlex-EVC:並列生成による持続的フレキシブル感情音声変換
- Authors: Hyoung-Seok Oh, Sang-Hoon Lee, Deok-Hyun Cho, Seong-Whan Lee
- Abstract要約: 感情音声変換(EVC)は、話者の声の感情的トーンを変化させようとするものである。
EVCの最近の進歩は、ピッチと持続時間の同時モデリングに関係している。
この研究は、並列音声生成に焦点を移す。
- 参考スコア(独自算出の注目度): 37.35829410807451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotional voice conversion (EVC) seeks to modify the emotional tone of a
speaker's voice while preserving the original linguistic content and the
speaker's unique vocal characteristics. Recent advancements in EVC have
involved the simultaneous modeling of pitch and duration, utilizing the
potential of sequence-to-sequence (seq2seq) models. To enhance reliability and
efficiency in conversion, this study shifts focus towards parallel speech
generation. We introduce Duration-Flexible EVC (DurFlex-EVC), which integrates
a style autoencoder and unit aligner. Traditional models, while incorporating
self-supervised learning (SSL) representations that contain both linguistic and
paralinguistic information, have neglected this dual nature, leading to reduced
controllability. Addressing this issue, we implement cross-attention to
synchronize these representations with various emotions. Additionally, a style
autoencoder is developed for the disentanglement and manipulation of style
elements. The efficacy of our approach is validated through both subjective and
objective evaluations, establishing its superiority over existing models in the
field.
- Abstract(参考訳): 感情音声変換(EVC)は、元の言語内容と話者の独特の声質を保ちながら、話者の声の感情的トーンを変更しようとするものである。
EVCの最近の進歩は、Sequence-to-Sequence(seq2seq)モデルのポテンシャルを利用して、ピッチと持続時間の同時モデリングに関わっている。
変換の信頼性と効率を高めるため,本研究は並列音声生成に焦点を移す。
本研究では,Duration-Flexible EVC (DurFlex-EVC) について紹介する。
従来のモデルは、言語情報とパラ言語情報の両方を含む自己教師付き学習(SSL)表現を取り入れているが、この二重性を無視しており、制御性が低下している。
この問題に対処するため、これらの表現を様々な感情と同期させるクロスアテンションを実装した。
さらに、スタイル要素の切り離しと操作のためのスタイルオートエンコーダも開発されている。
このアプローチの有効性は主観的評価と客観的評価の両方を通して検証され、この分野の既存モデルに対する優位性が確立される。
関連論文リスト
- CTEFM-VC: Zero-Shot Voice Conversion Based on Content-Aware Timbre Ensemble Modeling and Flow Matching [7.144608815694702]
CTEFM-VCは、発話を言語内容と音色表現に分解するフレームワークである。
音色モデリング能力と生成音声の自然性を高めるため,文脈を考慮した音色アンサンブルモデリング手法を提案する。
論文 参考訳(メタデータ) (2024-11-04T12:23:17Z) - Takin-VC: Zero-shot Voice Conversion via Jointly Hybrid Content and Memory-Augmented Context-Aware Timbre Modeling [14.98368067290024]
Takin-VCは、新しいゼロショットVCフレームワークである。
実験結果から,Takin-VC法は最先端のゼロショットVCシステムを上回ることがわかった。
論文 参考訳(メタデータ) (2024-10-02T09:07:33Z) - Non-autoregressive real-time Accent Conversion model with voice cloning [0.0]
我々は音声クローンを用いたリアルタイムアクセント変換のための非自己回帰モデルを開発した。
このモデルは入力L2音声に基づいて最小レイテンシでネイティブなL1音声を生成する。
このモデルは、話者の声の音色、性別、アクセントをリアルタイムで保存し、クローンし、変更することができる。
論文 参考訳(メタデータ) (2024-05-21T19:07:26Z) - StyleSpeech: Self-supervised Style Enhancing with VQ-VAE-based
Pre-training for Expressive Audiobook Speech Synthesis [63.019962126807116]
音声ブックの合成音声の表現的品質は、一般化されたモデルアーキテクチャとアンバランスなスタイル分布によって制限される。
本稿では,VQ-VAEに基づく音声合成のための事前学習による自己教師付きスタイル向上手法を提案する。
論文 参考訳(メタデータ) (2023-12-19T14:13:26Z) - TokenSplit: Using Discrete Speech Representations for Direct, Refined,
and Transcript-Conditioned Speech Separation and Recognition [51.565319173790314]
TokenSplit は Transformer アーキテクチャを使用するシーケンス・ツー・シーケンス・エンコーダ・デコーダモデルである。
また,本モデルでは,書き起こし条件付けの有無にかかわらず,分離の点で優れた性能を発揮することを示す。
また、自動音声認識(ASR)の性能を測定し、音声合成の音声サンプルを提供し、我々のモデルの有用性を実証する。
論文 参考訳(メタデータ) (2023-08-21T01:52:01Z) - SeqDiffuSeq: Text Diffusion with Encoder-Decoder Transformers [50.90457644954857]
本研究では,拡散モデルを用いてシーケンス・ツー・シーケンスのテキスト生成を行う。
シーケンス・ツー・シーケンス生成のためのテキスト拡散モデルであるSeqDiffuSeqを提案する。
実験結果は、テキストの品質と推論時間の観点から、シーケンス・ツー・シーケンス生成の優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-20T15:16:24Z) - End-to-end Audio-visual Speech Recognition with Conformers [65.30276363777514]
ResNet-18とConvolution-augmented Transformer(Conformer)に基づくハイブリッドCTC/Attentionモデルを提案する。
特に、オーディオおよびビジュアルエンコーダは、生のピクセルとオーディオ波形から直接特徴を抽出することを学びます。
提案手法は, 音声のみ, 視覚のみ, および視聴覚実験において, 最先端の性能を高めることを実証する。
論文 参考訳(メタデータ) (2021-02-12T18:00:08Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
本稿では,非並列音声変換手法である非並列音声変換法(seq2seq)を提案する。
本手法では,ボトルネック特徴抽出器(BNE)とセック2セック合成モジュールを組み合わせる。
主観的および主観的評価は,提案手法が自然性と話者類似性の両方において優れた音声変換性能を有することを示す。
論文 参考訳(メタデータ) (2020-09-06T13:01:06Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。