論文の概要: Machine Learning for Healthcare-IoT Security: A Review and Risk Mitigation
- arxiv url: http://arxiv.org/abs/2401.09124v1
- Date: Wed, 17 Jan 2024 10:55:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 12:27:42.429787
- Title: Machine Learning for Healthcare-IoT Security: A Review and Risk Mitigation
- Title(参考訳): ヘルスケアとIoTセキュリティのための機械学習 - レビューとリスク軽減
- Authors: Mirza Akhi Khatun, Sanober Farheen Memon, Ciarán Eising, Lubna Luxmi Dhirani,
- Abstract要約: 本稿では、医療用IoTの基礎、プライバシ、マシンラーニングやH-IoTデバイスに関連するデータセキュリティの課題についてレビューする。
この論文は、知覚、ネットワーク、クラウド、アプリケーションなどの医療用IoTレイヤを監視することの重要性をさらに強調する。
- 参考スコア(独自算出の注目度): 4.499833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Healthcare Internet-of-Things (H-IoT), commonly known as Digital Healthcare, is a data-driven infrastructure that highly relies on smart sensing devices (i.e., blood pressure monitors, temperature sensors, etc.) for faster response time, treatments, and diagnosis. However, with the evolving cyber threat landscape, IoT devices have become more vulnerable to the broader risk surface (e.g., risks associated with generative AI, 5G-IoT, etc.), which, if exploited, may lead to data breaches, unauthorized access, and lack of command and control and potential harm. This paper reviews the fundamentals of healthcare IoT, its privacy, and data security challenges associated with machine learning and H-IoT devices. The paper further emphasizes the importance of monitoring healthcare IoT layers such as perception, network, cloud, and application. Detecting and responding to anomalies involves various cyber-attacks and protocols such as Wi-Fi 6, Narrowband Internet of Things (NB-IoT), Bluetooth, ZigBee, LoRa, and 5G New Radio (5G NR). A robust authentication mechanism based on machine learning and deep learning techniques is required to protect and mitigate H-IoT devices from increasing cybersecurity vulnerabilities. Hence, in this review paper, security and privacy challenges and risk mitigation strategies for building resilience in H-IoT are explored and reported.
- Abstract(参考訳): デジタルヘルスケア(Digital Healthcare)として知られるHealthcare Internet-of-Things(H-IoT)は、スマートセンシングデバイス(血圧モニター、温度センサーなど)に強く依存して、応答時間、治療、診断を高速化するデータ駆動インフラストラクチャである。
しかし、進化するサイバー脅威の状況において、IoTデバイスはより広いリスク表面(例えば、生成AIや5G-IoTに関連するリスクなど)に対してより脆弱になっている。
本稿では、医療用IoTの基礎、プライバシ、マシンラーニングやH-IoTデバイスに関連するデータセキュリティの課題についてレビューする。
この論文は、知覚、ネットワーク、クラウド、アプリケーションなどの医療用IoTレイヤを監視することの重要性をさらに強調する。
異常の検出と応答には、Wi-Fi 6、Narrowband Internet of Things (NB-IoT)、Bluetooth、ZigBee、LoRa、および5G New Radio (5G NR)などの様々なサイバー攻撃とプロトコルが含まれる。
マシンラーニングとディープラーニング技術に基づく堅牢な認証メカニズムは、H-IoTデバイスをサイバーセキュリティの脆弱性の増加から保護し、軽減するために必要である。
したがって、このレビュー論文では、H-IoTでレジリエンスを構築するためのセキュリティとプライバシの課題とリスク軽減戦略を調査し、報告する。
関連論文リスト
- Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
IoT(Internet of Things)に対する攻撃は、デバイス、アプリケーション、インタラクションのネットワーク化と統合化が進むにつれて増加している。
IoTデバイスを効率的にセキュアにするためには、侵入システムのリアルタイム検出が重要である。
本稿では、IoTセキュリティのための機械学習ベースの侵入検知戦略に関する最新の研究について検討する。
論文 参考訳(メタデータ) (2024-10-01T19:24:34Z) - Detection of Energy Consumption Cyber Attacks on Smart Devices [1.515687944002438]
本稿では,受信パケットを解析することにより,スマートホームデバイスに対するエネルギー消費攻撃を検出するための軽量な手法を提案する。
リソースの制約を考慮し、攻撃を検出すると管理者に即座に警告する。
論文 参考訳(メタデータ) (2024-04-30T10:29:25Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
IoT(Internet of Things)は、特にヘルスケアにおいて、人間の生活の質を大幅に向上させる。
ヒトデジタルツイン(HDT)は、個体の複製を包括的に特徴付ける革新的なパラダイムとして提案されている。
HDTは、多用途で生き生きとした人間のデジタルテストベッドとして機能することで、医療監視の応用を超えて、IoTヘルスの強化を図っている。
最近、生成人工知能(GAI)は、高度なAIアルゴリズムを利用して、多種多様なデータを自動的に生成、操作、修正できるため、有望なソリューションである可能性がある。
論文 参考訳(メタデータ) (2024-01-22T03:17:41Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
本稿では、異なる分野におけるIoTに関する法医学的およびセキュリティ上の問題についてレビューする。
ほとんどのIoTデバイスは、標準的なセキュリティ対策が欠如しているため、攻撃に対して脆弱である。
消費者のセキュリティを意識したニーズを満たすために、IoTはスマートホームシステムの開発に使用できる。
論文 参考訳(メタデータ) (2023-09-06T04:41:48Z) - An Intelligent Mechanism for Monitoring and Detecting Intrusions in IoT
Devices [0.7219077740523682]
この研究は、フェデレートラーニングとマルチ層パーセプトロンニューラルネットワークを活用して、IoTデバイスに対するサイバー攻撃を高精度に検出し、データプライバシ保護を強化するホストベースの侵入検知システムを提案する。
論文 参考訳(メタデータ) (2023-06-23T11:26:00Z) - Machine and Deep Learning for IoT Security and Privacy: Applications,
Challenges, and Future Directions [0.0]
IoT(Internet of Things)の統合は、多数のインテリジェントデバイスを人間による最小限の干渉で接続する。
現在のセキュリティアプローチも改善され、IoT環境を効果的に保護できる。
ディープラーニング(DL)/機械学習(ML)メソッドは、IoTシステムからセキュリティ上のインテリジェンスシステムへの安全な接触を可能にするため、IoTシステムを保護するために不可欠である。
論文 参考訳(メタデータ) (2022-10-24T19:02:27Z) - Smart Home, security concerns of IoT [91.3755431537592]
IoT(モノのインターネット)は、国内環境において広く普及している。
人々は自宅をスマートホームにリニューアルしているが、インターネットに接続された多くのデバイスを常時オンの環境センサーで所有するというプライバシー上の懸念はいまだに不十分だ。
デフォルトパスワードと弱いパスワード、安価な材料とハードウェア、暗号化されていない通信は、IoTデバイスの主要な脅威と脆弱性として識別される。
論文 参考訳(メタデータ) (2020-07-06T10:36:11Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
組織におけるIoTデバイスの利用の増加は、攻撃者が利用可能な攻撃ベクトルの数を増やしている。
広く採用されている独自のデバイス(BYOD)ポリシにより、従業員が任意のIoTデバイスを職場に持ち込み、組織のネットワークにアタッチすることで、攻撃のリスクも増大する。
本研究では、ネットワークトラフィックにディープラーニングを適用し、ネットワークに接続されたIoTデバイスを自動的に識別する。
論文 参考訳(メタデータ) (2020-02-25T12:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。