Space and Time Continuous Physics Simulation From Partial Observations
- URL: http://arxiv.org/abs/2401.09198v3
- Date: Tue, 20 Feb 2024 06:31:47 GMT
- Title: Space and Time Continuous Physics Simulation From Partial Observations
- Authors: Janny Steeven, Nadri Madiha, Digne Julie, Wolf Christian
- Abstract summary: Data-driven methods based on large-scale machine learning promise high adaptivity by integrating long-range dependencies more directly and efficiently.
We focus on fluid dynamics and address the shortcomings of a large part of the literature, which are based on fixed support for computations and predictions in the form of regular or irregular grids.
We propose a novel setup to perform predictions in a continuous spatial and temporal domain while being trained on sparse observations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modern techniques for physical simulations rely on numerical schemes and
mesh-refinement methods to address trade-offs between precision and complexity,
but these handcrafted solutions are tedious and require high computational
power. Data-driven methods based on large-scale machine learning promise high
adaptivity by integrating long-range dependencies more directly and
efficiently. In this work, we focus on fluid dynamics and address the
shortcomings of a large part of the literature, which are based on fixed
support for computations and predictions in the form of regular or irregular
grids. We propose a novel setup to perform predictions in a continuous spatial
and temporal domain while being trained on sparse observations. We formulate
the task as a double observation problem and propose a solution with two
interlinked dynamical systems defined on, respectively, the sparse positions
and the continuous domain, which allows to forecast and interpolate a solution
from the initial condition. Our practical implementation involves recurrent
GNNs and a spatio-temporal attention observer capable of interpolating the
solution at arbitrary locations. Our model not only generalizes to new initial
conditions (as standard auto-regressive models do) but also performs evaluation
at arbitrary space and time locations. We evaluate on three standard datasets
in fluid dynamics and compare to strong baselines, which are outperformed both
in classical settings and in the extended new task requiring continuous
predictions.
Related papers
- Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
Predicting backbone-temporal traffic flow presents challenges due to complex interactions between temporal factors.
Existing approaches address these dimensions in isolation, neglecting their critical interdependencies.
In this paper, we introduce Sanonymous-Temporal Unitized Unitized Cell (ASTUC), a unified framework designed to capture both spatial and temporal dependencies.
arXiv Detail & Related papers (2024-11-14T07:34:31Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Modeling Randomly Observed Spatiotemporal Dynamical Systems [7.381752536547389]
Currently available neural network-based modeling approaches fall short when faced with data collected randomly over time and space.
In response, we developed a new method that effectively handles such randomly sampled data.
Our model integrates techniques from amortized variational inference, neural differential equations, neural point processes, and implicit neural representations to predict both the dynamics of the system and the timings and locations of future observations.
arXiv Detail & Related papers (2024-06-01T09:03:32Z) - Learning Efficient Surrogate Dynamic Models with Graph Spline Networks [28.018442945654364]
We present GraphSplineNets, a novel deep-learning method to speed up the forecasting of physical systems.
Our method uses two differentiable spline collocation methods to efficiently predict response at any location in time and space.
arXiv Detail & Related papers (2023-10-25T06:32:47Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
We propose TrendGCN to address the challenge of balancing dynamics and robustness.
Our model simultaneously incorporates spatial (node-wise) embeddings and temporal (time-wise) embeddings to account for heterogeneous space-and-time convolutions.
Compared with traditional approaches that handle step-wise predictive errors independently, our approach can produce more realistic and robust forecasts.
arXiv Detail & Related papers (2022-08-05T09:36:55Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Long-time integration of parametric evolution equations with
physics-informed DeepONets [0.0]
We introduce an effective framework for learning infinite-dimensional operators that map random initial conditions to associated PDE solutions within a short time interval.
Global long-time predictions across a range of initial conditions can be then obtained by iteratively evaluating the trained model.
This introduces a new approach to temporal domain decomposition that is shown to be effective in performing accurate long-time simulations.
arXiv Detail & Related papers (2021-06-09T20:46:17Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
A new class of physics-based methods related to Koopman theory has been introduced, offering an alternative for processing nonlinear dynamical systems.
We propose a novel Consistent Koopman Autoencoder model which, unlike the majority of existing work, leverages the forward and backward dynamics.
Key to our approach is a new analysis which explores the interplay between consistent dynamics and their associated Koopman operators.
arXiv Detail & Related papers (2020-03-04T18:24:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.