Multi-Objective Meta Learning
- URL: http://arxiv.org/abs/2102.07121v1
- Date: Sun, 14 Feb 2021 10:23:09 GMT
- Title: Multi-Objective Meta Learning
- Authors: Feiyang Ye, Baijiong Lin, Zhixiong Yue, Pengxin Guo, Qiao Xiao, Yu
Zhang
- Abstract summary: We propose a unified gradient-based Multi-Objective Meta Learning (MOML) framework.
We show the effectiveness of the proposed MOML framework in several meta learning problems.
- Score: 2.9932638148627104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta learning with multiple objectives can be formulated as a Multi-Objective
Bi-Level optimization Problem (MOBLP) where the upper-level subproblem is to
solve several possible conflicting targets for the meta learner. However,
existing studies either apply an inefficient evolutionary algorithm or linearly
combine multiple objectives as a single-objective problem with the need to tune
combination weights. In this paper, we propose a unified gradient-based
Multi-Objective Meta Learning (MOML) framework and devise the first
gradient-based optimization algorithm to solve the MOBLP by alternatively
solving the lower-level and upper-level subproblems via the gradient descent
method and the gradient-based multi-objective optimization method,
respectively. Theoretically, we prove the convergence properties of the
proposed gradient-based optimization algorithm. Empirically, we show the
effectiveness of the proposed MOML framework in several meta learning problems,
including few-shot learning, neural architecture search, domain adaptation, and
multi-task learning.
Related papers
- UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level Optimization [7.097069899573992]
We study the Multi-Objective Bi-Level Optimization (MOBLO) problem.
Existing gradient-based MOBLO algorithms need to compute the Hessian matrix.
We propose an efficient first-order multi-gradient method for MOBLO, called FORUM.
arXiv Detail & Related papers (2024-01-17T15:03:37Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
Multiobjective optimization (MOCO) problems can be found in many real-world applications.
We develop a learning-based approach to approximate the whole Pareto set for a given MOCO problem without further search procedure.
Our proposed method significantly outperforms some other methods on the multiobjective traveling salesman problem, multiconditioned vehicle routing problem and multi knapsack problem in terms of solution quality, speed, and model efficiency.
arXiv Detail & Related papers (2022-03-29T09:26:22Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z) - A Nested Bi-level Optimization Framework for Robust Few Shot Learning [10.147225934340877]
NestedMAML learns to assign weights to training tasks or instances.
Experiments on synthetic and real-world datasets demonstrate that NestedMAML efficiently mitigates the effects of "unwanted" tasks or instances.
arXiv Detail & Related papers (2020-11-13T06:41:22Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z) - On the Global Optimality of Model-Agnostic Meta-Learning [133.16370011229776]
Model-a meta-learning (MAML) formulates meta-learning as a bilevel optimization problem, where the inner level solves each subtask based on a shared prior.
We characterize optimality of the stationary points attained by MAML for both learning and supervised learning, where the inner-level outer-level problems are solved via first-order optimization methods.
arXiv Detail & Related papers (2020-06-23T17:33:14Z) - Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning [63.64636047748605]
We develop a new theoretical framework to provide convergence guarantee for the general multi-step MAML algorithm.
In particular, our results suggest that an inner-stage step needs to be chosen inversely proportional to $N$ of inner-stage steps in order for $N$ MAML to have guaranteed convergence.
arXiv Detail & Related papers (2020-02-18T19:17:54Z) - MODRL/D-AM: Multiobjective Deep Reinforcement Learning Algorithm Using
Decomposition and Attention Model for Multiobjective Optimization [15.235261981563523]
This paper proposes a multiobjective deep reinforcement learning method to solve multiobjective optimization problem.
In our method, each subproblem is solved by an attention model, which can exploit the structure features as well as node features of input nodes.
arXiv Detail & Related papers (2020-02-13T12:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.