論文の概要: RoleCraft-GLM: Advancing Personalized Role-Playing in Large Language
Models
- arxiv url: http://arxiv.org/abs/2401.09432v1
- Date: Sun, 17 Dec 2023 17:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-22 09:25:28.869873
- Title: RoleCraft-GLM: Advancing Personalized Role-Playing in Large Language
Models
- Title(参考訳): RoleCraft-GLM: 大規模言語モデルにおけるパーソナライズされたロールプレイングの改善
- Authors: Meiling Tao, Xuechen Liang, Tianyu Shi, Lei Yu, Yiting Xie
- Abstract要約: RoleCraft-GLMは、大規模言語モデル(LLM)によるパーソナライズされたロールプレイングの強化を目的とした革新的なフレームワークである。
従来の有名人中心のキャラクターから多彩な非有名人ペルソナへとシフトする、ユニークな会話データセットをコントリビュートする。
私たちのアプローチには、細心の注意深いキャラクタ開発、対話が現実的かつ感情的に共鳴することを保証することが含まれる。
- 参考スコア(独自算出の注目度): 7.245560044289611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents RoleCraft-GLM, an innovative framework aimed at enhancing
personalized role-playing with Large Language Models (LLMs). RoleCraft-GLM
addresses the key issue of lacking personalized interactions in conversational
AI, and offers a solution with detailed and emotionally nuanced character
portrayals. We contribute a unique conversational dataset that shifts from
conventional celebrity-centric characters to diverse, non-celebrity personas,
thus enhancing the realism and complexity of language modeling interactions.
Additionally, our approach includes meticulous character development, ensuring
dialogues are both realistic and emotionally resonant. The effectiveness of
RoleCraft-GLM is validated through various case studies, highlighting its
versatility and skill in different scenarios. Our framework excels in
generating dialogues that accurately reflect characters' personality traits and
emotions, thereby boosting user engagement. In conclusion, RoleCraft-GLM marks
a significant leap in personalized AI interactions, and paves the way for more
authentic and immersive AI-assisted role-playing experiences by enabling more
nuanced and emotionally rich dialogues
- Abstract(参考訳): 本研究では,Large Language Models (LLM) を用いたパーソナライズされたロールプレイングの促進を目的とした,革新的なフレームワークであるRoleCraft-GLMを提案する。
RoleCraft-GLMは、対話型AIにおけるパーソナライズされたインタラクションの欠如という重要な問題に対処し、詳細で感情的にニュアンスのある人物描写を備えたソリューションを提供する。
従来の有名人中心のキャラクターから多様な非セレブリティパーソナラへと変化し,言語モデリングインタラクションのリアリズムと複雑性を高める,ユニークな対話型データセットを提供する。
さらに,本手法では,直感的なキャラクタ開発や,対話が現実的かつ感情的に共鳴することを保証する。
RoleCraft-GLMの有効性は、さまざまなケーススタディを通じて検証され、さまざまなシナリオにおけるその汎用性とスキルを強調している。
本フレームワークは,キャラクターの性格特性や感情を正確に反映した対話生成に優れ,ユーザのエンゲージメントを高める。
結論として、RoleCraft-GLMはパーソナライズされたAIインタラクションの大きな飛躍であり、よりニュアンスで感情に富んだ対話を可能にすることで、より正確で没入的なAI支援型ロールプレイングエクスペリエンスの道を開く。
関連論文リスト
- PsyPlay: Personality-Infused Role-Playing Conversational Agents [44.621060656111084]
PsyPlayは、リッチなパーソナリティの表現を容易にする対話生成フレームワークである。
我々は,PsyPlayが意図した性格特性を正確に表現でき,GPT-3.5で全体の成功率が80.31%に達することを示す。
我々はPsyPlay-Benchと呼ばれるパーソナライズされたロールプレイのための対話コーパスを構築した。
論文 参考訳(メタデータ) (2025-02-06T07:17:12Z) - OpenCharacter: Training Customizable Role-Playing LLMs with Large-Scale Synthetic Personas [65.83634577897564]
本研究では,文字一般化機能を備えた大規模言語モデルを実現するための大規模データ合成手法について検討する。
まず、ペルソナハブのペルソナを用いて、大規模な文字プロファイルを合成することから始める。
次に、応答書き換えと応答生成という2つの戦略を検討し、文字対応の命令応答を生成する。
論文 参考訳(メタデータ) (2025-01-26T07:07:01Z) - CharacterBox: Evaluating the Role-Playing Capabilities of LLMs in Text-Based Virtual Worlds [74.02480671181685]
ロールプレイングは大規模言語モデル(LLM)の重要な機能である
現在の評価手法は, 実演に不可欠なニュアンス特性や動作を適切に把握するに足りていない。
本研究では,キャラクタボックスを提案する。キャラクタボックスは,キャラクタの微粒な挙動を再現するシミュレーションサンドボックスである。
論文 参考訳(メタデータ) (2024-12-07T12:09:35Z) - What if Red Can Talk? Dynamic Dialogue Generation Using Large Language Models [0.0]
本稿では,大規模言語モデル(LLM)を用いて動的かつ文脈的に適切な文字相互作用を生成する対話フィラーフレームワークを提案する。
The Final Fantasy VII Remake and Pokemonの環境でこのフレームワークをテストする。
本研究の目的は,よりニュアンスの高いフィラーダイアログ作成を支援することであり,それによってプレイヤーの没入感を高め,RPG体験の全般的向上を図ることである。
論文 参考訳(メタデータ) (2024-07-29T19:12:18Z) - Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data [58.92110996840019]
本稿では、パーソナリティを指標としたデータを用いて、ロールプレイング言語モデル(RPLM)を強化することを提案する。
具体的には、心理学的尺度からの質問を活用し、高度なRPAを蒸留し、文字の心を把握した対話を生成する。
実験により,本データセットを用いてトレーニングしたRPLMは,一般人格関連評価と人格関連評価の両面において,高度なロールプレイング能力を示した。
論文 参考訳(メタデータ) (2024-06-27T06:24:00Z) - CloChat: Understanding How People Customize, Interact, and Experience
Personas in Large Language Models [15.915071948354466]
CloChatは、大規模言語モデルにおけるエージェントペルソナの簡単かつ正確なカスタマイズをサポートするインターフェースである。
その結果、参加者はカスタマイズされたエージェントと感情結合を形成し、よりダイナミックな対話を行い、相互作用を持続することに興味を示した。
論文 参考訳(メタデータ) (2024-02-23T11:25:17Z) - CharacterGLM: Customizing Chinese Conversational AI Characters with
Large Language Models [66.4382820107453]
本稿では,ChatGLM上に構築されたモデルである characterGLM について紹介する。
我々のキャラクタGLMは文字ベースの対話(CharacterDial)を生成するために設計されており、人間固有の社会的欲求と感情的欲求を満たすための文字カスタマイズを備えた対話型AIシステムを実現することを目的としている。
論文 参考訳(メタデータ) (2023-11-28T14:49:23Z) - Tachikuma: Understading Complex Interactions with Multi-Character and
Novel Objects by Large Language Models [67.20964015591262]
我々は,複数文字と新しいオブジェクトベースインタラクション推定タスクとサポートデータセットからなる,立久間というベンチマークを導入する。
このデータセットは、ゲームプレイ中のリアルタイム通信からログデータをキャプチャし、多様な、接地された複雑なインタラクションを提供して、さらなる探索を行う。
本稿では,対話理解の強化に有効であることを示すため,簡単なプロンプトベースラインを提案し,その性能評価を行う。
論文 参考訳(メタデータ) (2023-07-24T07:40:59Z) - Large Language Models Meet Harry Potter: A Bilingual Dataset for
Aligning Dialogue Agents with Characters [70.84938803753062]
本稿では,対話エージェントと文字アライメントの研究を進めるために設計されたHarry Potter Dialogueデータセットを紹介する。
このデータセットはハリー・ポッターシリーズのすべての対話セッション(英語と中国語の両方)を含んでいる。
対話シーン、話者、人物関係、属性など、重要な背景情報とともに注釈付けされている。
論文 参考訳(メタデータ) (2022-11-13T10:16:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。