論文の概要: Reasoning with random sets: An agenda for the future
- arxiv url: http://arxiv.org/abs/2401.09435v1
- Date: Tue, 19 Dec 2023 18:17:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-22 09:25:34.733443
- Title: Reasoning with random sets: An agenda for the future
- Title(参考訳): ランダム集合による推論:未来への課題
- Authors: Fabio Cuzzolin
- Abstract要約: 確率集合を用いた統計的推論の完全分岐理論の開発について論じる。
この新理論を気候変動、機械学習、統計学習理論などの高影響領域に適用する。
- 参考スコア(独自算出の注目度): 5.7205053622241735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we discuss a potential agenda for future work in the theory of
random sets and belief functions, touching upon a number of focal issues: the
development of a fully-fledged theory of statistical reasoning with random
sets, including the generalisation of logistic regression and of the classical
laws of probability; the further development of the geometric approach to
uncertainty, to include general random sets, a wider range of uncertainty
measures and alternative geometric representations; the application of this new
theory to high-impact areas such as climate change, machine learning and
statistical learning theory.
- Abstract(参考訳): In this paper, we discuss a potential agenda for future work in the theory of random sets and belief functions, touching upon a number of focal issues: the development of a fully-fledged theory of statistical reasoning with random sets, including the generalisation of logistic regression and of the classical laws of probability; the further development of the geometric approach to uncertainty, to include general random sets, a wider range of uncertainty measures and alternative geometric representations; the application of this new theory to high-impact areas such as climate change, machine learning and statistical learning theory.
関連論文リスト
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Risk Measures and Upper Probabilities: Coherence and Stratification [7.88657961743755]
機械学習の数学的基礎として、古典的確率論のより豊かな代替を考察する。
スペクトルリスク測度、チョーケ積分、ローレンツノルムといった、強力で豊富な代替アグリゲーション汎函数について検討する。
我々は、この新しい不確実性に対するアプローチが、実践的な機械学習問題に取り組むのにどのように役立つかを実証的に示す。
論文 参考訳(メタデータ) (2022-06-07T11:08:16Z) - Excess risk analysis for epistemic uncertainty with application to
variational inference [110.4676591819618]
我々は、未知の分布からデータが生成される頻繁なセッティングにおいて、新しいEU分析を提示する。
一般化能力と、予測分布の分散やエントロピーなど、広く使用されているEUの測定値との関係を示す。
本研究では,PAC-ベイジアン理論に基づく予測とEU評価性能を直接制御する新しい変分推論を提案する。
論文 参考訳(メタデータ) (2022-06-02T12:12:24Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Forecasting: theory and practice [65.71277206849244]
本稿は、理論と予測の実践について、非体系的なレビューを提供する。
我々は、幅広い理論的、最先端のモデル、方法、原則、アプローチの概要を提供する。
そして、そのような理論概念が様々な実生活の文脈でどのように適用されるかを示す。
論文 参考訳(メタデータ) (2020-12-04T16:56:44Z) - A General Framework for Distributed Inference with Uncertain Models [14.8884251609335]
異種エージェントのネットワークを用いた分散分類の問題について検討する。
我々は、エージェントの不確実性を可能性に組み込む不確実性モデルの概念に基づいて構築する。
論文 参考訳(メタデータ) (2020-11-20T22:17:12Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
我々は、前向きモデルや後向きモデルによる後向き操作による予測として使われる計画の利益と特異性を理解するために活動する。
本稿では,予測を(再)評価すべき状態の選択に主眼を置いて,計画におけるモデルの利用について検討する。
論文 参考訳(メタデータ) (2020-10-26T16:00:47Z) - Universal time-series forecasting with mixture predictors [10.812772606528172]
この本は、逐次確率予測の問題、すなわち、過去から与えられた一連の観測結果の次の結果の確率を予測することに集中している。
主な対象は混合予測器であり、これは他の予測器の有限あるいは無限の集合の組み合わせとして形成される。
結果は、この方法の普遍性を、非常に一般的な確率的設定で示すが、その制限も示している。
論文 参考訳(メタデータ) (2020-10-01T10:56:23Z) - Conformal Prediction: a Unified Review of Theory and New Challenges [0.0]
本研究では, コンフォーマル予測に関する基本的な考え方と新しい展開について概説する。
本論文では, コンフォーマル予測の理論的基盤について詳細に論じる。
論文 参考訳(メタデータ) (2020-05-16T12:38:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。