論文の概要: Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models
- arxiv url: http://arxiv.org/abs/2409.13437v1
- Date: Fri, 20 Sep 2024 12:01:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 07:17:49.017387
- Title: Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models
- Title(参考訳): 遺伝子モデルを用いたダウンシンドローム脳バイオマーカーの発見に向けて
- Authors: Jordi Malé, Juan Fortea, Mateus Rozalem Aranha, Yann Heuzé, Neus Martínez-Abadías, Xavier Sevillano,
- Abstract要約: 我々は変分オートエンコーダと拡散モデルに基づく最先端の脳異常検出モデルの評価を行った。
以上の結果から、ダウン症候群の脳解剖を特徴付ける一次変化を効果的に検出するモデルが存在することが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain imaging has allowed neuroscientists to analyze brain morphology in genetic and neurodevelopmental disorders, such as Down syndrome, pinpointing regions of interest to unravel the neuroanatomical underpinnings of cognitive impairment and memory deficits. However, the connections between brain anatomy, cognitive performance and comorbidities like Alzheimer's disease are still poorly understood in the Down syndrome population. The latest advances in artificial intelligence constitute an opportunity for developing automatic tools to analyze large volumes of brain magnetic resonance imaging scans, overcoming the bottleneck of manual analysis. In this study, we propose the use of generative models for detecting brain alterations in people with Down syndrome affected by various degrees of neurodegeneration caused by Alzheimer's disease. To that end, we evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models, leveraging a proprietary dataset of brain magnetic resonance imaging scans. Following a comprehensive evaluation process, our study includes several key analyses. First, we conducted a qualitative evaluation by expert neuroradiologists. Second, we performed both quantitative and qualitative reconstruction fidelity studies for the generative models. Third, we carried out an ablation study to examine how the incorporation of histogram post-processing can enhance model performance. Finally, we executed a quantitative volumetric analysis of subcortical structures. Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy, including a smaller cerebellum, enlarged ventricles, and cerebral cortex reduction, as well as the parietal lobe alterations caused by Alzheimer's disease.
- Abstract(参考訳): 脳イメージングにより、神経科学者は、ダウン症候群、認知障害や記憶障害の神経解剖学的基盤を解明するための関心領域の特定など、遺伝や神経発達障害の脳形態を分析できるようになった。
しかし、脳解剖学、認知能力、アルツハイマー病などの合併症の関連性はまだダウン症候群の集団ではよく分かっていない。
人工知能の最新の進歩は、大量の脳磁気共鳴イメージングスキャンを解析する自動ツールを開発する機会となり、手動解析のボトルネックを克服する。
本研究では、アルツハイマー病による神経変性の度合いに影響を及ぼすダウン症候群患者の脳変化を検出するための生成モデルを提案する。
そこで我々は,脳磁気共鳴画像スキャンの独自のデータセットを活用し,変分オートエンコーダと拡散モデルに基づく最先端の脳異常検出モデルの評価を行った。
総合的な評価プロセスの後、本研究はいくつかの重要な分析を含む。
まず,神経放射線学の専門家による質的評価を行った。
第2に, 生成モデルに対する定量的および定性的再構成忠実度調査を行った。
第3に,ヒストグラムのポストプロセッシングがモデル性能をいかに向上させるかを検討するため,アブレーション試験を行った。
最後に,皮質下構造の定量的体積解析を行った。
以上の結果より,ダウン症候群の脳解剖を特徴付ける一次変化,小脳小脳,拡大した心室,大脳皮質の縮小,およびアルツハイマー病による頭頂葉の変化を効果的に検出できるモデルがあることが示唆された。
関連論文リスト
- Parsing altered brain connectivity in neurodevelopmental disorders by integrating graph-based normative modeling and deep generative networks [1.2115617129203957]
本稿では,神経型集団における脳ネットワークの発達を特徴付けるために,深層生成モデルとグラフベース規範モデルを統合する枠組みを提案する。
神経型脳ネットワークの発達軌跡を効果的に把握するために, バイオインスパイアされた配線制約が組み込まれている。
自閉症スペクトラム障害児の多用例に応用し,本枠組みの臨床的有用性を示す。
論文 参考訳(メタデータ) (2024-10-14T20:21:11Z) - Brain-Aware Readout Layers in GNNs: Advancing Alzheimer's early Detection and Neuroimaging [1.074960192271861]
本研究では,グラフニューラルネットワーク(GNN)のための新しい脳認識読み出し層(BA読み出し層)を提案する。
機能的接続とノード埋め込みに基づく脳領域のクラスタリングによって、このレイヤは、複雑な脳ネットワーク特性をキャプチャするGNNの機能を改善する。
以上の結果から,BA読み出し層を有するGNNは,プレクリニカルアルツハイマー認知複合度(PACC)の予測において,従来のモデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:04:45Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
脳ディフューザー(Brain diffuser)は、拡散に基づくエンド・ツー・エンドの脳ネットワーク生成モデルである。
被験者間の構造的脳ネットワークの差異を分析することで、より構造的接続性や疾患関連情報を利用する。
アルツハイマー病の場合、提案モデルは、アルツハイマー病神経画像イニシアチブデータベース上の既存のツールキットの結果より優れている。
論文 参考訳(メタデータ) (2023-03-11T14:04:58Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Transformer-based normative modelling for anomaly detection of early
schizophrenia [1.291405125557051]
我々はニューロタイプ個体の3次元MRIスキャンでモデルを訓練した。
早期統合失調症の神経型コントロールと精神科患者の可能性について検討した。
論文 参考訳(メタデータ) (2022-12-08T18:22:36Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormerは、単一のfMRIボリュームを持つ脳疾患分類のための一般的なハイブリッドトランスフォーマーアーキテクチャである。
BrainFormerは、各voxel内のローカルキューを3D畳み込みでモデル化することによって構築される。
我々は、ABIDE、ADNI、MPILMBB、ADHD-200、ECHOを含む5つの独立して取得したデータセット上でBrainFormerを評価する。
論文 参考訳(メタデータ) (2022-08-05T07:54:10Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
脳MRIにおける構造-機能変換を初めて学習することにより,潜在的な解決策を提案する。
次に,大規模構造スキャンから空間整合機能画像を合成する。
時間的ローブは最も予測可能な構造領域であり、パリエト後頭ローブはモデルで最も予測可能な機能領域である。
論文 参考訳(メタデータ) (2021-04-10T03:16:33Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。