論文の概要: Gene-SGAN: a method for discovering disease subtypes with imaging and
genetic signatures via multi-view weakly-supervised deep clustering
- arxiv url: http://arxiv.org/abs/2301.10772v1
- Date: Wed, 25 Jan 2023 10:08:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-27 15:13:28.620307
- Title: Gene-SGAN: a method for discovering disease subtypes with imaging and
genetic signatures via multi-view weakly-supervised deep clustering
- Title(参考訳): 遺伝子SGAN : 多視点弱監視深層クラスタリングによる画像および遺伝子シグネチャを用いた疾患サブタイプ発見法
- Authors: Zhijian Yang, Junhao Wen, Ahmed Abdulkadir, Yuhan Cui, Guray Erus,
Elizabeth Mamourian, Randa Melhem, Dhivya Srinivasan, Sindhuja T.
Govindarajan, Jiong Chen, Mohamad Habes, Colin L. Masters, Paul Maruff,
Jurgen Fripp, Luigi Ferrucci, Marilyn S. Albert, Sterling C. Johnson, John C.
Morris, Pamela LaMontagne, Daniel S. Marcus, Tammie L. S. Benzinger, David A.
Wolk, Li Shen, Jingxuan Bao, Susan M. Resnick, Haochang Shou, Ilya M.
Nasrallah, Christos Davatzikos
- Abstract要約: Gene-SGANは、マルチビュー、弱教師付きディープクラスタリング手法である。
表現型および遺伝的データを共同で検討することで、病気の不均一性を識別する。
ジーン-SGANは、疾患のサブタイプやエンドフェノタイプ発見に広く応用されている。
- 参考スコア(独自算出の注目度): 6.79528256151419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Disease heterogeneity has been a critical challenge for precision diagnosis
and treatment, especially in neurologic and neuropsychiatric diseases. Many
diseases can display multiple distinct brain phenotypes across individuals,
potentially reflecting disease subtypes that can be captured using MRI and
machine learning methods. However, biological interpretability and treatment
relevance are limited if the derived subtypes are not associated with genetic
drivers or susceptibility factors. Herein, we describe Gene-SGAN - a
multi-view, weakly-supervised deep clustering method - which dissects disease
heterogeneity by jointly considering phenotypic and genetic data, thereby
conferring genetic correlations to the disease subtypes and associated
endophenotypic signatures. We first validate the generalizability,
interpretability, and robustness of Gene-SGAN in semi-synthetic experiments. We
then demonstrate its application to real multi-site datasets from 28,858
individuals, deriving subtypes of Alzheimer's disease and brain endophenotypes
associated with hypertension, from MRI and SNP data. Derived brain phenotypes
displayed significant differences in neuroanatomical patterns, genetic
determinants, biological and clinical biomarkers, indicating potentially
distinct underlying neuropathologic processes, genetic drivers, and
susceptibility factors. Overall, Gene-SGAN is broadly applicable to disease
subtyping and endophenotype discovery, and is herein tested on disease-related,
genetically-driven neuroimaging phenotypes.
- Abstract(参考訳): 疾患の不均一性は、特に神経疾患や神経精神医学疾患において、精密診断と治療にとって重要な課題である。
多くの病気は、MRIや機械学習の手法で捉えられる病気のサブタイプを反映して、個人間で複数の異なる脳の表現型を表示することができる。
しかし、派生したサブタイプが遺伝的要因や感受性因子と関係しない場合、生物学的解釈可能性と治療的妥当性は限定される。
本稿では,多視点,弱教師付き深層クラスタリング手法であるGene-SGANについて述べる。表現型および遺伝的データを共同で検討し,疾患のサブタイプと関連する内因性シグネチャとの遺伝的相関を考慮し,疾患の多様性を識別する。
まず, 半合成実験における遺伝子SGANの一般化可能性, 解釈可能性, 堅牢性を検証した。
次に、高血圧に関連するアルツハイマー病のサブタイプと脳内フェノタイプをMRIおよびSNPデータから抽出し、28,858人の実際のマルチサイトデータセットに適用した。
派生した脳表現型は、神経解剖学的パターン、遺伝子決定因子、生物学的および臨床的バイオマーカーに有意な差を示し、潜在的な神経病理学的過程、遺伝的ドライバ、および感受性因子を示す。
全体的に、遺伝子sganは疾患のサブタイプとエンドフェノタイプの発見に広く適用され、疾患関連、遺伝子駆動の神経画像表現型でテストされている。
関連論文リスト
- Identifying latent disease factors differently expressed in patient subgroups using group factor analysis [54.67330718129736]
本稿では,サブグループ特異的およびサブグループ共通潜在因子を明らかにするための新しいアプローチを提案する。
提案手法は,正規化されたホースシュー先行群を用いたスパース群因子解析 (GFA) であり,確率計画法を用いて実装した。
論文 参考訳(メタデータ) (2024-10-10T13:12:14Z) - Interpreting artificial neural networks to detect genome-wide association signals for complex traits [0.0]
複雑な疾患の遺伝的アーキテクチャを調べることは、遺伝的および環境要因の高度にポリジェニックでインタラクティブな景観のために困難である。
我々は、シミュレーションと実際のジェノタイプ/フェノタイプデータセットの両方を用いて、複雑な特性を予測するために、人工ニューラルネットワークを訓練した。
論文 参考訳(メタデータ) (2024-07-26T15:20:42Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - Dimensional Neuroimaging Endophenotypes: Neurobiological Representations
of Disease Heterogeneity Through Machine Learning [11.653182438505558]
まず、機械学習とマルチモーダルMRIを用いて、様々な神経精神・神経変性疾患における疾患の多様性を解明する研究の体系的な概要を述べる。
次に、関連する機械学習手法を要約し、DNEと呼ばれる新しいパラダイムについて議論する。
DNEは神経精神医学および神経変性疾患の神経生物学的不均一性を低次元で情報的かつ定量的な脳表現表現に識別する。
論文 参考訳(メタデータ) (2024-01-17T16:31:48Z) - GestaltMML: Enhancing Rare Genetic Disease Diagnosis through Multimodal Machine Learning Combining Facial Images and Clinical Texts [8.805728428427457]
本稿では,Transformerアーキテクチャのみに基づくマルチモーダル機械学習(MML)アプローチを提案する。
顔画像、人口統計情報(年齢、性別、民族)、臨床メモを統合して予測精度を向上させる。
論文 参考訳(メタデータ) (2023-12-23T18:40:25Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Few-Shot Meta Learning for Recognizing Facial Phenotypes of Genetic
Disorders [55.41644538483948]
分類の自動化と類似性検索は、医師が可能な限り早期に遺伝状態の診断を行うための意思決定を支援する。
従来の研究は分類問題としてこの問題に対処し、深層学習法を用いてきた。
本研究では,健常人の大規模なコーパスで訓練した顔認識モデルを用いて,顔の表情認識に移行した。
論文 参考訳(メタデータ) (2022-10-23T11:52:57Z) - Pathology Steered Stratification Network for Subtype Identification in
Alzheimer's Disease [7.594681424335177]
アルツハイマー病(英: Alzheimers disease、AD)は、β-アミロイド、病理学的タウ、神経変性を特徴とする異種多時性神経変性疾患である。
本稿では,AD病理学に確立されたドメイン知識を反応拡散モデルにより組み込んだ新しい病理組織形成ネットワーク(PSSN)を提案する。
論文 参考訳(メタデータ) (2022-10-12T02:52:00Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
56個の脳画像QTを用いてSNPを予測する機械学習モデルを学習した。
アルツハイマー病(AD)リスク遺伝子APOEのSNPは、ラスソとランダムな森林に対して最低のRMSEを有していた。
ランダム・フォレストは、線形モデルによって優先順位付けされなかったが、脳関連疾患と関連があることが知られている追加のSNPを特定した。
論文 参考訳(メタデータ) (2022-03-31T20:15:22Z) - MAGIC: Multi-scale Heterogeneity Analysis and Clustering for Brain
Diseases [3.955454029331185]
マルチスケールクラスタリングを活用することにより,病気の多様性を明らかにする新しい手法MAGICを提案する。
シミュレーションした異種神経解剖学的データを用いてMAGICを検証するとともに、アルツハイマー病(AD)の異種性を探究して臨床応用の可能性を示す。
以上の結果より,大脳皮質大萎縮と大脳皮質大萎縮の2つの亜型は,海馬の微細萎縮と大脳皮質大萎縮の2つからなることが明らかとなった。
論文 参考訳(メタデータ) (2020-07-01T23:42:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。