論文の概要: Large Language Model Lateral Spear Phishing: A Comparative Study in
Large-Scale Organizational Settings
- arxiv url: http://arxiv.org/abs/2401.09727v1
- Date: Thu, 18 Jan 2024 05:06:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 18:00:50.037611
- Title: Large Language Model Lateral Spear Phishing: A Comparative Study in
Large-Scale Organizational Settings
- Title(参考訳): 大規模言語モデルによる側方スパイアフィッシング:大規模組織設定の比較研究
- Authors: Mazal Bethany, Athanasios Galiopoulos, Emet Bethany, Mohammad Bahrami
Karkevandi, Nishant Vishwamitra, Peyman Najafirad
- Abstract要約: 本研究では,Large Language Models (LLMs) を用いた横型フィッシングメール作成の先駆的な研究である。
11ヶ月の期間に約9000人の個人を対象とする大規模な第1階層の大学運営を目標としている。
また、LLM生成したフィッシングを検知する電子メールフィルタリングインフラの能力も評価した。
- 参考スコア(独自算出の注目度): 3.251318035773221
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The critical threat of phishing emails has been further exacerbated by the
potential of LLMs to generate highly targeted, personalized, and automated
spear phishing attacks. Two critical problems concerning LLM-facilitated
phishing require further investigation: 1) Existing studies on lateral phishing
lack specific examination of LLM integration for large-scale attacks targeting
the entire organization, and 2) Current anti-phishing infrastructure, despite
its extensive development, lacks the capability to prevent LLM-generated
attacks, potentially impacting both employees and IT security incident
management. However, the execution of such investigative studies necessitates a
real-world environment, one that functions during regular business operations
and mirrors the complexity of a large organizational infrastructure. This
setting must also offer the flexibility required to facilitate a diverse array
of experimental conditions, particularly the incorporation of phishing emails
crafted by LLMs. This study is a pioneering exploration into the use of Large
Language Models (LLMs) for the creation of targeted lateral phishing emails,
targeting a large tier 1 university's operation and workforce of approximately
9,000 individuals over an 11-month period. It also evaluates the capability of
email filtering infrastructure to detect such LLM-generated phishing attempts,
providing insights into their effectiveness and identifying potential areas for
improvement. Based on our findings, we propose machine learning-based detection
techniques for such emails to detect LLM-generated phishing emails that were
missed by the existing infrastructure, with an F1-score of 98.96.
- Abstract(参考訳): フィッシングメールの重大な脅威は、高度にターゲティングされ、パーソナライズされ、自動化されたスピアフィッシング攻撃を生成するLLMのポテンシャルによってさらに悪化した。
LLMファシリケートフィッシングに関する2つの重要な問題には、さらなる調査が必要である。
1) 組織全体を対象とした大規模攻撃に対するLCM統合の具体的な検討を欠いた側方フィッシングに関する既存研究
2) 現行のフィッシング対策インフラは, 広範な開発にもかかわらず, LLMによる攻撃を防ぐ能力に欠けており, 従業員にもITセキュリティインシデント管理にも影響を及ぼす可能性がある。
しかし、そのような調査研究の実行は、通常のビジネス運用中に機能し、大規模な組織インフラの複雑さを反映する現実世界の環境を必要とする。
この設定はまた、様々な実験条件、特にllmsによるフィッシングメールの組み込みを容易にするのに必要な柔軟性を提供する必要がある。
本研究は,11ヶ月で約9,000人の大層1大学の運営と労働力をターゲットにした大規模言語モデル(llm)による横型フィッシングメールの作成を開拓した先駆的研究である。
また、電子メールフィルタリングインフラがLCMの生成したフィッシングを検知し、その有効性や改善の潜在的な領域を識別する能力も評価した。
そこで本研究では,既存のインフラでは欠落していたllm生成フィッシングメールを,98.96のf1スコアで検出するための機械学習に基づく検出手法を提案する。
関連論文リスト
- Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
最近のMLセキュリティ文献は、整列型大規模言語モデル(LLM)に対する攻撃に焦点を当てている。
本稿では,LLMエージェントに特有のセキュリティとプライバシの脆弱性を分析する。
我々は、人気のあるオープンソースおよび商用エージェントに対する一連の実証的な攻撃を行い、その脆弱性の即時的な影響を実証した。
論文 参考訳(メタデータ) (2025-02-12T17:19:36Z) - Enhancing Phishing Email Identification with Large Language Models [0.40792653193642503]
フィッシングメールの検出における大規模言語モデル(LLM)の有効性について検討した。
実験により, LLMは高精度で高い精度を達成することが示された。
論文 参考訳(メタデータ) (2025-02-07T08:45:50Z) - LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
大規模言語モデル(LLM)は、無数のタスクにまたがって印象的な機能を示してきたが、時には望ましくない出力が得られる。
本稿では LLM とプロセスベースの検証器を組み合わせた新しいフレームワーク LLM2 を紹介する。
LLMs2は妥当な候補を生成するのに責任を持ち、検証者は望ましい出力と望ましくない出力を区別するためにタイムリーなプロセスベースのフィードバックを提供する。
論文 参考訳(メタデータ) (2024-12-29T06:32:36Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Next-Generation Phishing: How LLM Agents Empower Cyber Attackers [10.067883724547182]
フィッシングメールのエスカレートする脅威は、Large Language Models(LLMs)の台頭により、ますます洗練されつつある。
攻撃者はLSMを利用して、より説得力があり回避的なフィッシングメールを作成するため、現在のフィッシング防御のレジリエンスを評価することが不可欠である。
我々は、Gmail Spam Filter、Apache SpamAssassin、Proofpointなどの従来のフィッシング検出と、SVM、Logistic Regression、Naive Bayesといった機械学習モデルに関する包括的な評価を行います。
以上の結果から,全検知器にまたがるリフレッシュメールの検出精度は著しく低下し,現在のフィッシング防御における重大な弱点が浮き彫りになった。
論文 参考訳(メタデータ) (2024-11-21T06:20:29Z) - Evaluating LLM-based Personal Information Extraction and Countermeasures [63.91918057570824]
大規模言語モデル(LLM)に基づく個人情報抽出をベンチマークすることができる。
LLMは攻撃者によって誤用され、個人プロファイルから様々な個人情報を正確に抽出する。
プロンプトインジェクションは強力なLDMベースの攻撃に対して防御し、攻撃をより効果的でない従来の攻撃に還元する。
論文 参考訳(メタデータ) (2024-08-14T04:49:30Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
我々は,このような脆弱性のリスクを評価するために,BIPIAと呼ばれる間接的インジェクション攻撃のための最初のベンチマークを導入した。
我々の分析では、LLMが情報コンテキストと動作可能な命令を区別できないことと、外部コンテンツ内での命令の実行を回避できないことの2つの主要な要因を同定した。
ブラックボックスとホワイトボックスという2つの新しい防御機構と、これらの脆弱性に対処するための明確なリマインダーを提案する。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - Detecting Phishing Sites Using ChatGPT [2.3999111269325266]
本稿では,大規模言語モデル(LLM)を用いてフィッシングサイトを検出するChatPhishDetectorという新しいシステムを提案する。
本システムでは,Webクローラを利用してWebサイトから情報を収集し,クローリングデータに基づいてLLMのプロンプトを生成し,LLMが生成した応答から検出結果を取得する。
GPT-4Vを用いた実験結果は、98.7%の精度と99.6%のリコールで優れた性能を示し、他のLLMや既存のシステムよりも優れていた。
論文 参考訳(メタデータ) (2023-06-09T11:30:08Z) - Spear Phishing With Large Language Models [3.2634122554914002]
本研究では,スピアフィッシングに大規模言語モデル(LLM)を用いる方法について検討した。
私はOpenAIのGPT-3.5とGPT-4モデルを使用して、600人以上の英国議会議員に対して独自のフィッシングメッセージを作成します。
私の発見は、これらのメッセージが現実的であるだけでなく、コスト効率も高いという証拠を提供しています。
論文 参考訳(メタデータ) (2023-05-11T16:55:19Z) - Targeted Phishing Campaigns using Large Scale Language Models [0.0]
フィッシングメール(英: Phishing email)とは、個人を騙して機密情報を明らかにしたり、攻撃者に利益をもたらす行動を起こさせる不正なメッセージである。
生成したテキストの品質など,様々な基準に基づき,これらの電子メールを生成する際のNLMの性能を評価するためのフレームワークを提案する。
評価の結果,NLMは個人を騙すのが難しいフィッシングメールを生成することができるが,その有効性は特定のNLMとトレーニングデータに基づいて異なることがわかった。
論文 参考訳(メタデータ) (2022-12-30T03:18:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。