GA-SmaAt-GNet: Generative Adversarial Small Attention GNet for Extreme Precipitation Nowcasting
- URL: http://arxiv.org/abs/2401.09881v2
- Date: Wed, 29 May 2024 19:41:41 GMT
- Title: GA-SmaAt-GNet: Generative Adversarial Small Attention GNet for Extreme Precipitation Nowcasting
- Authors: Eloy Reulen, Siamak Mehrkanoon,
- Abstract summary: We present the GA-SmaAt-GNet model, a novel generative adversarial framework for extreme precipitation nowcasting.
We evaluate the performance of SmaAt-GNet and GA-SmaAt-GNet using real-life precipitation data from the Netherlands.
- Score: 1.642094639107215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, data-driven modeling approaches have gained significant attention across various meteorological applications, particularly in weather forecasting. However, these methods often face challenges in handling extreme weather conditions. In response, we present the GA-SmaAt-GNet model, a novel generative adversarial framework for extreme precipitation nowcasting. This model features a unique SmaAt-GNet generator, an extension of the successful SmaAt-UNet architecture, capable of integrating precipitation masks (binarized precipitation maps) to enhance predictive accuracy. Additionally, GA-SmaAt-GNet incorporates an attention-augmented discriminator inspired by the Pix2Pix architecture. This innovative framework paves the way for generative precipitation nowcasting using multiple data sources. We evaluate the performance of SmaAt-GNet and GA-SmaAt-GNet using real-life precipitation data from the Netherlands, revealing notable improvements in overall performance and for extreme precipitation events compared to other models. Specifically, our proposed architecture demonstrates its main performance gain in summer and autumn, when precipitation intensity is typically at its peak. Furthermore, we conduct uncertainty analysis on the GA-SmaAt-GNet model and the precipitation dataset, providing insights into its predictive capabilities. Finally, we employ Grad-CAM to offer visual explanations of our model's predictions, generating activation heatmaps that highlight areas of input activation throughout the network.
Related papers
- Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
Precipitation nowcasting is crucial across various industries and plays a significant role in mitigating and adapting to climate change.
We introduce an efficient deep learning model for precipitation nowcasting, capable of predicting rainfall up to 8 hours in advance with greater accuracy than existing operational models.
arXiv Detail & Related papers (2024-10-11T09:09:07Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
This study illustrates the relative strengths and weaknesses of physics-based and AI-based approaches to weather prediction.
A hybrid NWP-AI system is proposed, wherein GEM-predicted large-scale state variables are spectrally nudged toward GraphCast predictions.
Results indicate that this hybrid approach is capable of leveraging the strengths of GraphCast to enhance the prediction skill of the GEM model.
arXiv Detail & Related papers (2024-07-08T16:39:25Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Forecasting the Future with Future Technologies: Advancements in Large Meteorological Models [3.332582598089642]
The field of meteorological forecasting has undergone a significant transformation with the integration of large models.
Models like FourCastNet, Pangu-Weather, GraphCast, ClimaX, and FengWu have made notable contributions by providing accurate, high-resolution forecasts.
arXiv Detail & Related papers (2024-04-10T00:52:54Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Generative Modeling of High-resolution Global Precipitation Forecasts [2.1485350418225244]
We present improvements to the architecture and training process of a current state-of-the art deep learning precipitation model (FourCastNet) using a novel generative adversarial network (GAN)
Our improvements achieve superior performance in capturing the extreme percentiles of global precipitation, while comparable to state-of-the-art NWP models in terms of forecast skill at 1--2 day lead times.
arXiv Detail & Related papers (2022-10-22T17:21:16Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.