Vulnerabilities of Foundation Model Integrated Federated Learning Under Adversarial Threats
- URL: http://arxiv.org/abs/2401.10375v2
- Date: Tue, 2 Apr 2024 01:31:24 GMT
- Title: Vulnerabilities of Foundation Model Integrated Federated Learning Under Adversarial Threats
- Authors: Chen Wu, Xi Li, Jiaqi Wang,
- Abstract summary: Federated Learning (FL) addresses critical issues in machine learning related to data privacy and security, yet suffering from data insufficiency and imbalance under certain circumstances.
The emergence of foundation models (FMs) offers potential solutions to the limitations of existing FL frameworks.
We conduct the first investigation on the vulnerability of FM integrated FL (FM-FL) under adversarial threats.
- Score: 34.51922824730864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) addresses critical issues in machine learning related to data privacy and security, yet suffering from data insufficiency and imbalance under certain circumstances. The emergence of foundation models (FMs) offers potential solutions to the limitations of existing FL frameworks, e.g., by generating synthetic data for model initialization. However, due to the inherent safety concerns of FMs, integrating FMs into FL could introduce new risks, which remains largely unexplored. To address this gap, we conduct the first investigation on the vulnerability of FM integrated FL (FM-FL) under adversarial threats. Based on a unified framework of FM-FL, we introduce a novel attack strategy that exploits safety issues of FM to compromise FL client models. Through extensive experiments with well-known models and benchmark datasets in both image and text domains, we reveal the high susceptibility of the FM-FL to this new threat under various FL configurations. Furthermore, we find that existing FL defense strategies offer limited protection against this novel attack approach. This research highlights the critical need for enhanced security measures in FL in the era of FMs.
Related papers
- Trustworthy Federated Learning: Privacy, Security, and Beyond [37.495790989584584]
Federated Learning (FL) addresses concerns by facilitating collaborative model training across distributed data sources without transferring raw data.
We conduct an extensive survey of the security and privacy issues prevalent in FL, underscoring the vulnerability of communication links and the potential for cyber threats.
We identify the intricate security challenges that arise within the FL frameworks, aiming to contribute to the development of secure and efficient FL systems.
arXiv Detail & Related papers (2024-11-03T14:18:01Z) - FedPFT: Federated Proxy Fine-Tuning of Foundation Models [55.58899993272904]
Adapting Foundation Models (FMs) for downstream tasks through Federated Learning (FL) emerges as a promising strategy for protecting data privacy and valuable FMs.
Existing methods fine-tune FM by allocating sub-FM to clients in FL, leading to suboptimal performance due to insufficient tuning and inevitable error accumulations of gradients.
We propose Federated Proxy Fine-Tuning (FedPFT), a novel method enhancing FMs adaptation in downstream tasks through FL by two key modules.
arXiv Detail & Related papers (2024-04-17T16:30:06Z) - Robust Federated Learning for Wireless Networks: A Demonstration with Channel Estimation [6.402721982801266]
Federated learning (FL) offers a privacy-preserving collaborative approach for training models in wireless networks.
Despite extensive studies on FL-empowered channel estimation, the security concerns associated with FL require meticulous attention.
In this paper, we analyze such vulnerabilities, corresponding solutions were brought forth, and validated through simulation.
arXiv Detail & Related papers (2024-04-03T22:03:28Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - The Role of Federated Learning in a Wireless World with Foundation Models [59.8129893837421]
Foundation models (FMs) are general-purpose artificial intelligence (AI) models that have recently enabled multiple brand-new generative AI applications.
Currently, the exploration of the interplay between FMs and federated learning (FL) is still in its nascent stage.
This article explores the extent to which FMs are suitable for FL over wireless networks, including a broad overview of research challenges and opportunities.
arXiv Detail & Related papers (2023-10-06T04:13:10Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
This study explores the problem of Federated Learning (FL) by utilizing the Deep Equilibrium (DEQ) models instead of conventional deep learning networks.
We claim that incorporating DEQ models into the federated learning framework naturally addresses several open problems in FL.
To the best of our knowledge, this study is the first to establish a connection between DEQ models and federated learning.
arXiv Detail & Related papers (2023-05-29T22:51:40Z) - WW-FL: Secure and Private Large-Scale Federated Learning [15.412475066687723]
Federated learning (FL) is an efficient approach for large-scale distributed machine learning that promises data privacy by keeping training data on client devices.
Recent research has uncovered vulnerabilities in FL, impacting both security and privacy through poisoning attacks.
We propose WW-FL, an innovative framework that combines secure multi-party computation with hierarchical FL to guarantee data and global model privacy.
arXiv Detail & Related papers (2023-02-20T11:02:55Z) - OLIVE: Oblivious Federated Learning on Trusted Execution Environment
against the risk of sparsification [22.579050671255846]
This study focuses on the analysis of the vulnerabilities of server-side TEEs in Federated Learning and the defense.
First, we theoretically analyze the leakage of memory access patterns, revealing the risk of sparsified gradients.
Second, we devise an inference attack to link memory access patterns to sensitive information in the training dataset.
arXiv Detail & Related papers (2022-02-15T03:23:57Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Threats to Federated Learning: A Survey [35.724483191921244]
Federated learning (FL) has emerged as a promising solution under this new reality.
Existing FL protocol design has been shown to exhibit vulnerabilities which can be exploited by adversaries.
This paper provides a concise introduction to the concept of FL, and a unique taxonomy covering threat models and two major attacks on FL.
arXiv Detail & Related papers (2020-03-04T15:30:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.