Robust Federated Learning for Wireless Networks: A Demonstration with Channel Estimation
- URL: http://arxiv.org/abs/2404.03088v2
- Date: Tue, 30 Jul 2024 08:19:53 GMT
- Title: Robust Federated Learning for Wireless Networks: A Demonstration with Channel Estimation
- Authors: Zexin Fang, Bin Han, Hans D. Schotten,
- Abstract summary: Federated learning (FL) offers a privacy-preserving collaborative approach for training models in wireless networks.
Despite extensive studies on FL-empowered channel estimation, the security concerns associated with FL require meticulous attention.
In this paper, we analyze such vulnerabilities, corresponding solutions were brought forth, and validated through simulation.
- Score: 6.402721982801266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) offers a privacy-preserving collaborative approach for training models in wireless networks, with channel estimation emerging as a promising application. Despite extensive studies on FL-empowered channel estimation, the security concerns associated with FL require meticulous attention. In a scenario where small base stations (SBSs) serve as local models trained on cached data, and a macro base station (MBS) functions as the global model setting, an attacker can exploit the vulnerability of FL, launching attacks with various adversarial attacks or deployment tactics. In this paper, we analyze such vulnerabilities, corresponding solutions were brought forth, and validated through simulation.
Related papers
- Vaccinating Federated Learning for Robust Modulation Classification in Distributed Wireless Networks [0.0]
We propose FedVaccine, a novel AMC model aimed at improving generalizability across signals with varying noise levels.
FedVaccine overcomes the limitations of existing FL-based AMC models' linear aggregation by employing a split-learning strategy.
These findings highlight FedVaccine's potential to enhance the reliability and performance of AMC systems in practical wireless network environments.
arXiv Detail & Related papers (2024-10-16T17:48:47Z) - Poisoning Attacks on Federated Learning-based Wireless Traffic Prediction [4.968718867282096]
Federated Learning (FL) offers a distributed framework to train a global control model across multiple base stations.
This makes it ideal for applications like wireless traffic prediction (WTP), which plays a crucial role in optimizing network resources.
Despite its promise, the security aspects of FL-based distributed wireless systems, particularly in regression-based WTP problems, remain inadequately investigated.
arXiv Detail & Related papers (2024-04-22T17:50:27Z) - Vulnerabilities of Foundation Model Integrated Federated Learning Under Adversarial Threats [34.51922824730864]
Federated Learning (FL) addresses critical issues in machine learning related to data privacy and security, yet suffering from data insufficiency and imbalance under certain circumstances.
The emergence of foundation models (FMs) offers potential solutions to the limitations of existing FL frameworks.
We conduct the first investigation on the vulnerability of FM integrated FL (FM-FL) under adversarial threats.
arXiv Detail & Related papers (2024-01-18T20:56:42Z) - Data and Model Poisoning Backdoor Attacks on Wireless Federated
Learning, and the Defense Mechanisms: A Comprehensive Survey [28.88186038735176]
Federated Learning (FL) has been increasingly considered for applications to wireless communication networks (WCNs)
In general, non-independent and identically distributed (non-IID) data of WCNs raises concerns about robustness.
This survey provides a comprehensive review of the latest backdoor attacks and defense mechanisms.
arXiv Detail & Related papers (2023-12-14T05:52:29Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - Seeing is Believing: A Federated Learning Based Prototype to Detect Wireless Injection Attacks [1.8142288667655782]
Reactive injection attacks are a class of security threats in wireless networks.
We implement secret-key based physical-layer signalling methods at the clients.
We show that robust ML models can be designed at the base-stations.
arXiv Detail & Related papers (2023-11-11T13:21:24Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - FedComm: Federated Learning as a Medium for Covert Communication [56.376997104843355]
Federated Learning (FL) is a solution to mitigate the privacy implications related to the adoption of deep learning.
This paper thoroughly investigates the communication capabilities of an FL scheme.
We introduce FedComm, a novel multi-system covert-communication technique.
arXiv Detail & Related papers (2022-01-21T17:05:56Z) - Unit-Modulus Wireless Federated Learning Via Penalty Alternating
Minimization [64.76619508293966]
Wireless federated learning (FL) is an emerging machine learning paradigm that trains a global parametric model from distributed datasets via wireless communications.
This paper proposes a wireless FL framework, which uploads local model parameters and computes global model parameters via wireless communications.
arXiv Detail & Related papers (2021-08-31T08:19:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.