New Pathways in Coevolutionary Computation
- URL: http://arxiv.org/abs/2401.10515v1
- Date: Fri, 19 Jan 2024 06:11:33 GMT
- Title: New Pathways in Coevolutionary Computation
- Authors: Moshe Sipper, Jason H. Moore, Ryan J. Urbanowicz
- Abstract summary: We present two new forms of coevolutionary algorithms.
One is a cooperative coevolutionary algorithm that discovers both a representation and an encoding for solving a particular problem of interest.
The other is a commensalistic coevolutionary algorithm that maintains two coevolving populations.
- Score: 2.402878726843412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The simultaneous evolution of two or more species with coupled fitness --
coevolution -- has been put to good use in the field of evolutionary
computation. Herein, we present two new forms of coevolutionary algorithms,
which we have recently designed and applied with success. OMNIREP is a
cooperative coevolutionary algorithm that discovers both a representation and
an encoding for solving a particular problem of interest. SAFE is a
commensalistic coevolutionary algorithm that maintains two coevolving
populations: a population of candidate solutions and a population of candidate
objective functions needed to measure solution quality during evolution.
Related papers
- Faster Optimal Coalition Structure Generation via Offline Coalition Selection and Graph-Based Search [61.08720171136229]
We present a novel algorithm, SMART, for the problem based on a hybridization of three innovative techniques.
Two of these techniques are based on dynamic programming, where we show a powerful connection between the coalitions selected for evaluation and the performance of the algorithms.
Our techniques bring a new way of approaching the problem and a new level of precision to the field.
arXiv Detail & Related papers (2024-07-22T23:24:03Z) - Phylogeny-informed fitness estimation [58.720142291102135]
We propose phylogeny-informed fitness estimation, which exploits a population's phylogeny to estimate fitness evaluations.
Our results indicate that phylogeny-informed fitness estimation can mitigate the drawbacks of down-sampled lexicase.
This work serves as an initial step toward improving evolutionary algorithms by exploiting runtime phylogenetic analysis.
arXiv Detail & Related papers (2023-06-06T19:05:01Z) - Co-Evolutionary Diversity Optimisation for the Traveling Thief Problem [11.590506672325668]
We introduce a co-evolutionary algorithm to simultaneously explore the two spaces for the multi-component traveling thief problem.
Results show the capability of the co-evolutionary algorithm to achieve significantly higher diversity compared to the baseline evolutionary diversity algorithms from the the literature.
arXiv Detail & Related papers (2022-07-28T12:02:15Z) - Runtime Analysis of Competitive co-Evolutionary Algorithms for Maximin Optimisation of a Bilinear Function [1.3053649021965603]
Co-evolutionary algorithms have a wide range of applications, such as in hardware design, evolution of strategies for board games, and patching software bugs.
It is an open challenge to develop a theory that can predict when co-evolutionary algorithms find solutions efficiently and reliable.
This paper provides a first step in developing runtime analysis for population-based competitive co-evolutionary algorithms.
arXiv Detail & Related papers (2022-06-30T12:35:36Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - Evolving Evolutionary Algorithms with Patterns [0.0]
The model is based on the Multi Expression Programming (MEP) technique.
Several evolutionary algorithms for function optimization are evolved by using the considered model.
arXiv Detail & Related papers (2021-10-10T16:26:20Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - cMLSGA: A Co-Evolutionary Multi-Level Selection Genetic Algorithm for
Multi-Objective Optimization [0.0]
Multi-Level Selection Genetic Algorithm (MLSGA) already shows good performance on range of problems.
This paper proposes a distinct set of co-evolutionary mechanisms, which defines co-evolution as competition between collectives rather than individuals.
arXiv Detail & Related papers (2021-04-22T13:52:21Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
We build upon a previously proposed neuroevolution framework to evolve deep convolutional models.
We propose a convolutional layer layout which allows kernels of different shapes and sizes to coexist within the same layer.
The proposed layout enables the size and shape of individual kernels within a convolutional layer to be evolved with a corresponding new mutation operator.
arXiv Detail & Related papers (2021-04-12T12:45:16Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
We develop an easy-to-directed, scalable, and robust evolutionary greedy algorithm (AdaLead)
AdaLead is a remarkably strong benchmark that out-competes more complex state of the art approaches in a variety of biologically motivated sequence design challenges.
arXiv Detail & Related papers (2020-10-05T16:40:38Z) - Devolutionary genetic algorithms with application to the minimum
labeling Steiner tree problem [0.0]
This paper characterizes and discusses devolutionary genetic algorithms and evaluates their performances in solving the minimum labeling Steiner tree (MLST) problem.
We define devolutionary algorithms as the process of reaching a feasible solution by devolving a population of super-optimal unfeasible solutions over time.
We show how classical evolutionary concepts, such as crossing, mutation and fitness can be adapted to aim at reaching an optimal or close-to-optimal solution.
arXiv Detail & Related papers (2020-04-18T13:27:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.