論文の概要: Beyond RMSE and MAE: Introducing EAUC to unmask hidden bias and unfairness in dyadic regression models
- arxiv url: http://arxiv.org/abs/2401.10690v3
- Date: Mon, 30 Dec 2024 18:21:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:03:25.856623
- Title: Beyond RMSE and MAE: Introducing EAUC to unmask hidden bias and unfairness in dyadic regression models
- Title(参考訳): RMSEとMAEを超えて: ダイアドレグレッションモデルにおける隠れバイアスと不公平を解き放つためのEAUCの導入
- Authors: Jorge Paz-Ruza, Amparo Alonso-Betanzos, Bertha Guijarro-Berdiñas, Brais Cancela, Carlos Eiras-Franco,
- Abstract要約: 個々の実体の非均一な観測値分布は、最先端のモデルに深刻なバイアスをもたらす。
このバイアスを捉えるには、Root Mean Squared Error(RMSE)のようなグローバルエラーメトリクスが不十分であることを示す。
我々は、すべての研究領域やモデルでそれを定量化できる新しい補完指標として、Eccentricity-Area Under the Curve (EAUC)を紹介した。
- 参考スコア(独自算出の注目度): 5.336076422485076
- License:
- Abstract: Dyadic regression models, which output real-valued predictions for pairs of entities, are fundamental in many domains (e.g. obtaining user-product ratings in Recommender Systems) and promising and under exploration in others (e.g. tuning patient-drug dosages in personalized pharmacology). In this work, we prove that non-uniform observed value distributions of individual entities lead to severe biases in state-of-the-art models, skewing predictions towards the average of observed past values for the entity and providing worse-than-random predictive power in eccentric yet crucial cases; we name this phenomenon eccentricity bias. We show that global error metrics like Root Mean Squared Error (RMSE) are insufficient to capture this bias, and we introduce Eccentricity-Area Under the Curve (EAUC) as a novel complementary metric that can quantify it in all studied domains and models. We prove the intuitive interpretation of EAUC by experimenting with naive post-training bias corrections, and theorize other options to use EAUC to guide the construction of fair models. This work contributes a bias-aware evaluation of dyadic regression to prevent unfairness in critical real-world applications of such systems.
- Abstract(参考訳): 例えば、Recommender Systemsのユーザー製品評価の取得など)多くの領域において基本的であり、他の領域では有望かつ検討中(例えば、パーソナライズされた薬理学における患者薬の量を調整するなど)である。
本研究では, 個々の実体の非一様観測値分布が, 最先端モデルにおける深刻なバイアスを生じさせ, 過去の観測値の平均に向かって予測を行い, 偏心的かつ重要な場合において, 異常な予測力をもたらすことを証明した。
このバイアスを捉えるには,Root Mean Squared Error(RMSE)のようなグローバルなエラー指標が不十分であることを示すとともに,Eccentricity-Area Under the Curve(EAUC)を,すべての研究領域やモデルで定量化可能な,新たな補完的指標として紹介する。
学習後バイアス補正の実験によってEAUCの直感的な解釈を証明し、フェアモデルの構築を導くためにEAUCを使用する他の選択肢を理論化する。
この研究は、これらのシステムの重要な実世界の応用における不公平さを防ぐために、偏見を考慮した回帰評価に寄与する。
関連論文リスト
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Fine-Grained Dynamic Framework for Bias-Variance Joint Optimization on Data Missing Not at Random [2.8165314121189247]
レコメンデーションシステムやディスプレイ広告など、ほとんどの実践的なアプリケーションでは、収集されたデータには欠落する値が含まれることが多い。
我々は,バイアスと分散を協調的に最適化する,体系的なきめ細かな動的学習フレームワークを開発した。
論文 参考訳(メタデータ) (2024-05-24T10:07:09Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Guide the Learner: Controlling Product of Experts Debiasing Method Based
on Token Attribution Similarities [17.082695183953486]
一般的な回避策は、二次バイアスモデルに基づいてトレーニング例を再重み付けすることで、堅牢なモデルをトレーニングすることである。
ここでは、バイアスドモデルが機能をショートカットする、という前提がある。
本稿では,主要モデルと偏りのあるモデル属性スコアの類似性を,プロダクト・オブ・エキスパートズ・ロス関数に組み込んだ微調整戦略を提案する。
論文 参考訳(メタデータ) (2023-02-06T15:21:41Z) - Biases in Inverse Ising Estimates of Near-Critical Behaviour [0.0]
逆推論は、ペアワイズ相互作用を経験的相関から再構成することを可能にする。
Pseudo-likelihood (PLM) などの推定値に偏りが認められた。
データ駆動法は神経科学による機能的磁気共鳴イメージング(fMRI)データセットに研究され応用された。
論文 参考訳(メタデータ) (2023-01-13T14:01:43Z) - Bias-inducing geometries: an exactly solvable data model with fairness implications [12.532003449620607]
我々は、正確に解決可能なデータ不均衡の高次元モデルを導入する。
この合成フレームワークで訓練された学習モデルの典型的特性を解析的に解き放つ。
フェアネス評価によく用いられる観測対象の正確な予測値を得る。
論文 参考訳(メタデータ) (2022-05-31T16:27:57Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Loss Estimators Improve Model Generalization [36.520569284970456]
予測モデルと並行して損失推定器を訓練し,対照訓練目標を用いて予測の不確実性を直接推定する。
モデル一般化における損失推定器の影響を,その分布データに対する忠実度と,トレーニング中に見つからない分布サンプルや新しいクラスの検出能力の両方の観点から示す。
論文 参考訳(メタデータ) (2021-03-05T16:35:10Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
信頼性正則化という新しいデバイアス化手法を導入する。
モデルがバイアスを悪用するのを防ぐと同時に、トレーニングのすべての例から学ぶのに十分なインセンティブを得られるようにします。
提案手法を3つのNLUタスクで評価し,前者とは対照的に,アウト・オブ・ディストリビューション・データセットの性能が向上することを示す。
論文 参考訳(メタデータ) (2020-05-01T11:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。