Data-Driven Target Localization: Benchmarking Gradient Descent Using the Cramer-Rao Bound
- URL: http://arxiv.org/abs/2401.11176v3
- Date: Mon, 22 Apr 2024 22:02:34 GMT
- Title: Data-Driven Target Localization: Benchmarking Gradient Descent Using the Cramer-Rao Bound
- Authors: Shyam Venkatasubramanian, Sandeep Gogineni, Bosung Kang, Muralidhar Rangaswamy,
- Abstract summary: In radar systems, precise target localization using azimuth and velocity estimation is paramount.
Traditional unbiased estimation methods have utilized gradient descent algorithms to reach the theoretical limits of the Cramer Rao Bound (CRB)
We show that our data-driven neural network model outperforms these traditional methods, yielding improved accuracies in target azimuth and velocity estimation.
- Score: 0.2796197251957244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In modern radar systems, precise target localization using azimuth and velocity estimation is paramount. Traditional unbiased estimation methods have utilized gradient descent algorithms to reach the theoretical limits of the Cramer Rao Bound (CRB) for the error of the parameter estimates. As an extension, we demonstrate on a realistic simulated example scenario that our earlier presented data-driven neural network model outperforms these traditional methods, yielding improved accuracies in target azimuth and velocity estimation. We emphasize, however, that this improvement does not imply that the neural network outperforms the CRB itself. Rather, the enhanced performance is attributed to the biased nature of the neural network approach. Our findings underscore the potential of employing deep learning methods in radar systems to achieve more accurate localization in cluttered and dynamic environments.
Related papers
- Robust Neural Pruning with Gradient Sampling Optimization for Residual Neural Networks [0.0]
This research embarks on pioneering the integration of gradient sampling optimization techniques, particularly StochGradAdam, into the pruning process of neural networks.
Our main objective is to address the significant challenge of maintaining accuracy in pruned neural models, critical in resource-constrained scenarios.
arXiv Detail & Related papers (2023-12-26T12:19:22Z) - Domain Generalization Guided by Gradient Signal to Noise Ratio of
Parameters [69.24377241408851]
Overfitting to the source domain is a common issue in gradient-based training of deep neural networks.
We propose to base the selection on gradient-signal-to-noise ratio (GSNR) of network's parameters.
arXiv Detail & Related papers (2023-10-11T10:21:34Z) - A Bayesian Approach to Robust Inverse Reinforcement Learning [54.24816623644148]
We consider a Bayesian approach to offline model-based inverse reinforcement learning (IRL)
The proposed framework differs from existing offline model-based IRL approaches by performing simultaneous estimation of the expert's reward function and subjective model of environment dynamics.
Our analysis reveals a novel insight that the estimated policy exhibits robust performance when the expert is believed to have a highly accurate model of the environment.
arXiv Detail & Related papers (2023-09-15T17:37:09Z) - Subspace Perturbation Analysis for Data-Driven Radar Target Localization [20.34399283905663]
We use subspace analysis to benchmark radar target localization accuracy across mismatched scenarios.
We generate comprehensive datasets by randomly placing targets of variable strengths in mismatched constrained areas.
We estimate target locations from these heatmap tensors using a convolutional neural network.
arXiv Detail & Related papers (2023-03-14T21:22:26Z) - On the Effective Usage of Priors in RSS-based Localization [56.68864078417909]
We propose a Received Signal Strength (RSS) fingerprint and convolutional neural network-based algorithm, LocUNet.
In this paper, we study the localization problem in dense urban settings.
We first recognize LocUNet's ability to learn the underlying prior distribution of the Rx position or Rx and transmitter (Tx) association preferences from the training data, and attribute its high performance to these.
arXiv Detail & Related papers (2022-11-28T00:31:02Z) - DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models [11.917949887615567]
We propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator.
The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference.
We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches.
arXiv Detail & Related papers (2022-05-04T18:12:17Z) - Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph
Neural Networks for Traffic Forecasting [2.088376060651494]
We focus on a diffusion convolutional recurrent neural network (DCRNN), a state-of-the-art method for short-term traffic forecasting.
We develop a scalable deep ensemble approach to quantify uncertainties for DCRNN.
We show that our generic and scalable approach outperforms the current state-of-the-art Bayesian and a number of other commonly used frequentist techniques.
arXiv Detail & Related papers (2022-04-04T16:10:55Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Integrating Recurrent Neural Networks with Data Assimilation for
Scalable Data-Driven State Estimation [0.0]
Data assimilation (DA) is integrated with machine learning to perform entirely data-driven online state estimation.
recurrent neural networks (RNNs) are implemented as surrogate models to replace key components of the DA cycle in numerical weather prediction (NWP)
It is shown how these RNNs can be using DA methods to directly update the hidden/reservoir state with observations of the target system.
arXiv Detail & Related papers (2021-09-25T03:56:53Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.