論文の概要: Estimating the Usefulness of Clarifying Questions and Answers for
Conversational Search
- arxiv url: http://arxiv.org/abs/2401.11463v1
- Date: Sun, 21 Jan 2024 11:04:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 16:20:57.663355
- Title: Estimating the Usefulness of Clarifying Questions and Answers for
Conversational Search
- Title(参考訳): 会話探索における質問と回答の明確化の有用性の推定
- Authors: Ivan Sekuli\'c, Weronika {\L}ajewska, Krisztian Balog, Fabio Crestani
- Abstract要約: 本稿では,質問を明確化するための回答処理手法を提案する。
具体的には,利用者が提示した質問と回答の提示による有用性を評価するための分類器を提案する。
その結果, 強い非混合開始基線よりも顕著な改善が認められた。
- 参考スコア(独自算出の注目度): 17.0363715044341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the body of research directed towards constructing and generating
clarifying questions in mixed-initiative conversational search systems is vast,
research aimed at processing and comprehending users' answers to such questions
is scarce. To this end, we present a simple yet effective method for processing
answers to clarifying questions, moving away from previous work that simply
appends answers to the original query and thus potentially degrades retrieval
performance. Specifically, we propose a classifier for assessing usefulness of
the prompted clarifying question and an answer given by the user. Useful
questions or answers are further appended to the conversation history and
passed to a transformer-based query rewriting module. Results demonstrate
significant improvements over strong non-mixed-initiative baselines.
Furthermore, the proposed approach mitigates the performance drops when non
useful questions and answers are utilized.
- Abstract(参考訳): 複合対話型検索システムにおいて,質問の構築と生成を目的とした研究が広く行われているが,質問に対するユーザの回答の処理と理解を目的とした研究は少ない。
そこで本研究では,従来の質問に答えを付加して検索性能を低下させるような従来の作業から脱却し,回答処理をシンプルかつ効果的に行う方法を提案する。
具体的には,ユーザに提示された質問と回答の有効性を評価するための分類器を提案する。
会話履歴に有用な質問や回答が付加され、トランスフォーマーベースのクエリ書き換えモジュールに渡される。
その結果,非混合イニシアティブベースラインが大幅に改善した。
さらに,提案手法は,非有用な質問や回答を利用する場合のパフォーマンス低下を軽減する。
関連論文リスト
- CLARINET: Augmenting Language Models to Ask Clarification Questions for Retrieval [52.134133938779776]
CLARINETは,回答が正しい候補の確実性を最大化する質問を選択することで,情報的明確化を問うシステムである。
提案手法は,大規模言語モデル(LLM)を検索分布の条件付きで拡張し,各ターンで真の候補のランクを最大化する問題を生成する。
論文 参考訳(メタデータ) (2024-04-28T18:21:31Z) - Asking Multimodal Clarifying Questions in Mixed-Initiative
Conversational Search [89.1772985740272]
混合開始型会話検索システムでは、質問を明確にすることで、意図を単一のクエリで表現するのに苦労するユーザを支援する。
マルチモーダル情報が関係するシナリオでは、非テクスチャ情報を用いることで、明確化のプロセスを改善することができると仮定する。
質問を明確にする4k以上のマルチモーダルを含むMelonというデータセットを収集し、14k以上の画像で濃縮する。
クエリの明確化フェーズにおけるマルチモーダルコンテンツの重要性を理解するために,いくつかの解析を行った。
論文 参考訳(メタデータ) (2024-02-12T16:04:01Z) - Answering Ambiguous Questions with a Database of Questions, Answers, and
Revisions [95.92276099234344]
ウィキペディアから生成される曖昧な質問のデータベースを利用して、あいまいな質問に答えるための新しい最先端技術を提案する。
提案手法は,リコール対策で15%,予測出力から不明瞭な質問を評価する尺度で10%向上する。
論文 参考訳(メタデータ) (2023-08-16T20:23:16Z) - Answering Unanswered Questions through Semantic Reformulations in Spoken
QA [20.216161323866867]
Spoken Question Answering (QA) は音声アシスタントの重要な機能であり、通常は複数のQAシステムによって支援される。
我々は失敗したQA要求を分析し、語彙的ギャップ、命題型、複雑な構文構造、高い特異性など、主要な課題を特定する。
本稿では,3つの言語的操作(リペア,構文的再構成,一般化)による質問の書き直しと回答を容易にするセマンティック質問修正(SURF)モデルを提案する。
論文 参考訳(メタデータ) (2023-05-27T07:19:27Z) - Conversational QA Dataset Generation with Answer Revision [2.5838973036257458]
本稿では,一節から質問に値するフレーズを抽出し,過去の会話を考慮し,それに対応する質問を生成する新しい枠組みを提案する。
本フレームワークでは,抽出した回答を質問生成後に修正し,その回答が一致した質問に正確に一致するようにした。
論文 参考訳(メタデータ) (2022-09-23T04:05:38Z) - Interactive Question Answering Systems: Literature Review [17.033640293433397]
対話型質問応答(Interactive Question answering)は、質問応答と対話システムの交差点に存在する、最近提案され、ますます人気が高まっているソリューションである。
ユーザがより多くの質問をできるようにすることで、インタラクティブな質問応答によって、ユーザはシステムと動的に対話し、より正確な結果を受け取ることができる。
本調査は,現在の文献で広く普及している対話型質問応答法の概要を概説する。
論文 参考訳(メタデータ) (2022-09-04T13:46:54Z) - Building and Evaluating Open-Domain Dialogue Corpora with Clarifying
Questions [65.60888490988236]
オープンドメインのシングルターンとマルチターンの会話に焦点を当てたデータセットをリリースする。
我々は最先端のニューラルベースラインをいくつかベンチマークする。
様々な対話における質問の明確化の質を評価するための,オフラインおよびオンラインのステップからなるパイプラインを提案する。
論文 参考訳(メタデータ) (2021-09-13T09:16:14Z) - A Graph-guided Multi-round Retrieval Method for Conversational
Open-domain Question Answering [52.041815783025186]
本稿では,会話のターン間の回答間の関係をモデル化するグラフ誘導検索手法を提案する。
また,検索コンテキストが現在の質問理解に与える影響を検討するために,マルチラウンド関連フィードバック手法を導入することを提案する。
論文 参考訳(メタデータ) (2021-04-17T04:39:41Z) - Analysing the Effect of Clarifying Questions on Document Ranking in
Conversational Search [10.335808358080289]
質問の明確化とユーザの回答の相違がランキングの質に与える影響について検討する。
単純な語彙ベースラインを導入し、既存のナイーブベースラインを著しく上回ります。
論文 参考訳(メタデータ) (2020-08-09T12:55:16Z) - Open-Retrieval Conversational Question Answering [62.11228261293487]
オープン検索型対話型質問応答 (ORConvQA) の設定を導入する。
ORConvQAのエンド・ツー・エンドシステムを構築し,レトリバー,リランカ,およびすべてトランスフォーマーをベースとしたリーダを特徴とする。
論文 参考訳(メタデータ) (2020-05-22T19:39:50Z) - Review-guided Helpful Answer Identification in E-commerce [38.276241153439955]
製品固有のコミュニティ質問応答プラットフォームは、潜在的な顧客の懸念に対処するのに大いに役立ちます。
このようなプラットフォーム上でユーザが提供する回答は、その品質に大きく違いがあります。
コミュニティからのヘルプフルネスの投票は、回答の全体的な品質を示すことができるが、しばしば欠落している。
論文 参考訳(メタデータ) (2020-03-13T11:34:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。