論文の概要: Graph Edits for Counterfactual Explanations: A comparative study
- arxiv url: http://arxiv.org/abs/2401.11609v2
- Date: Wed, 20 Mar 2024 19:12:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 19:17:37.209147
- Title: Graph Edits for Counterfactual Explanations: A comparative study
- Title(参考訳): 対実的説明のためのグラフ編集:比較研究
- Authors: Angeliki Dimitriou, Nikolaos Chaidos, Maria Lymperaiou, Giorgos Stamou,
- Abstract要約: 我々は,グラフ編集における過去の取り組みを,比較研究を行うことで,反現実的な説明として拡張する。
この目的のために、我々は入力データをグラフとして表現すべきかという重要な研究課題を提起する。
- 参考スコア(独自算出の注目度): 1.51422963961219
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Counterfactuals have been established as a popular explainability technique which leverages a set of minimal edits to alter the prediction of a classifier. When considering conceptual counterfactuals on images, the edits requested should correspond to salient concepts present in the input data. At the same time, conceptual distances are defined by knowledge graphs, ensuring the optimality of conceptual edits. In this work, we extend previous endeavors on graph edits as counterfactual explanations by conducting a comparative study which encompasses both supervised and unsupervised Graph Neural Network (GNN) approaches. To this end, we pose the following significant research question: should we represent input data as graphs, which is the optimal GNN approach in terms of performance and time efficiency to generate minimal and meaningful counterfactual explanations for black-box image classifiers?
- Abstract(参考訳): ファクトファクトは、最小限の編集のセットを利用して分類器の予測を変更する一般的な説明可能性手法として確立されている。
画像上の概念上の反事実を考える場合、要求された編集は入力データに存在する健全な概念に対応するべきである。
同時に、概念距離は知識グラフによって定義され、概念編集の最適性を保証する。
本研究では,教師付きグラフニューラルネット(GNN)アプローチと教師なしグラフニューラルネット(GNN)アプローチの両方を含む比較研究を行うことにより,グラフ編集における過去の取り組みを,対実的な説明として拡張する。
この目的のために、我々は入力データをグラフとして表現すべきかという重要な研究課題を提起する。これは、ブラックボックス画像分類器に対する最小限かつ有意義な反実的説明を生成するために、性能と時間効率の観点から最適なGNNアプローチである。
関連論文リスト
- GraphGI:A GNN Explanation Method using Game Interaction [5.149896909638598]
グラフニューラルネットワーク(GNN)は、様々な領域で広く利用されている。
現在のグラフ説明技術は、キーノードやエッジの識別に重点を置いており、モデル予測を駆動する重要なデータ機能に寄与している。
本稿では,対話力の高い連立関係を識別し,説明文として提示する新しい説明法GraphGIを提案する。
論文 参考訳(メタデータ) (2024-09-24T03:24:31Z) - Improving the interpretability of GNN predictions through conformal-based graph sparsification [9.550589670316523]
グラフニューラルネットワーク(GNN)は、グラフ分類タスクの解決において最先端のパフォーマンスを達成した。
エッジやノードを除去することで,最も予測可能なサブグラフを見つけるGNNエンハンチング手法を提案する。
我々は、共形予測に基づく報奨関数で得られる二段階最適化を解決するために強化学習を頼りにしている。
論文 参考訳(メタデータ) (2024-04-18T17:34:47Z) - Structure Your Data: Towards Semantic Graph Counterfactuals [1.8817715864806608]
概念に基づく対実的説明(CE)は、モデル予測にどの高レベルな意味的特徴が寄与するかを理解するための代替シナリオを考える説明である。
本研究では,入力データに付随する意味グラフに基づくCEを提案する。
論文 参考訳(メタデータ) (2024-03-11T08:40:37Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
そこで我々はMatchExplainerと呼ばれる新しい非パラメトリックな部分グラフマッチングフレームワークを提案し、説明的部分グラフを探索する。
ターゲットグラフと他のインスタンスを結合し、ノードに対応する距離を最小化することで最も重要な結合部分構造を識別する。
合成および実世界のデータセットの実験は、最先端のパラメトリックベースラインをかなりのマージンで上回り、MatchExplainerの有効性を示す。
論文 参考訳(メタデータ) (2023-01-07T05:14:45Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGMは、グラフニューラルネットワーク(GNN)ベースのグラフマッチングのパフォーマンスをトレーニングなしで向上するフレームワークである。
TFGMをさまざまなGNNに適用することは、ベースラインよりも有望な改善を示している。
論文 参考訳(メタデータ) (2022-01-14T09:04:46Z) - Contrastive Graph Neural Network Explanation [13.234975857626749]
グラフニューラルネットワークは構造化データの問題に対して顕著な結果を得るが、ブラックボックス予測器として現れる。
我々は、訓練データの基礎となる分布に準拠するグラフを使用しなければならないと論じる。
本稿では,このパラダイムに従う新しいコントラストGNN説明手法を提案する。
論文 参考訳(メタデータ) (2020-10-26T15:32:42Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。