Secure Multi-hop Telemetry Broadcasts for UAV Swarm Communication
- URL: http://arxiv.org/abs/2401.11915v1
- Date: Mon, 22 Jan 2024 13:01:49 GMT
- Title: Secure Multi-hop Telemetry Broadcasts for UAV Swarm Communication
- Authors: Randolf Rotta, Pavlo Mykytyn,
- Abstract summary: Unmanned Aerial Vehicles (UAVs) are evolving as adaptable platforms for a wide range of applications.
This paper investigates encrypted and authenticated multi-hop broadcast communication based on the transmission of custom IEEE 802.11 Wi-Fi data frames.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Unmanned Aerial Vehicles (UAVs) are evolving as adaptable platforms for a wide range of applications such as precise inspections, emergency response, and remote sensing. Autonomous UAV swarms require efficient and stable communication during deployment for a successful mission execution. For instance, the periodic exchange of telemetry data between all swarm members provides the foundation for formation flight and collision avoidance. However, due to the mobility of the vehicles and instability of wireless transmissions, maintaining a secure and reliable all-to-all communication remains challenging. This paper investigates encrypted and authenticated multi-hop broadcast communication based on the transmission of custom IEEE 802.11 Wi-Fi data frames.
Related papers
- Towards Secure and Reliable Heterogeneous Real-time Telemetry Communication in Autonomous UAV Swarms [0.0]
This paper evaluates UAV peer-to-peer telemetry communication, highlighting its security vulnerabilities.
We suggest a symmetric key agreement and data encryption mechanism implementation for inter - swarm communication.
arXiv Detail & Related papers (2024-04-11T08:37:22Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
Negligence on the security of infotainment data communication in IoV networks can unintentionally open an easy access point for social engineering attacks.
In particular, we first classify data communication in the IoV network, examine the security focus of each data communication, and then develop a differentiated security architecture to provide security protection on a file-to-file basis.
arXiv Detail & Related papers (2024-03-29T12:01:31Z) - Covert Communication for Untrusted UAV-Assisted Wireless Systems [1.2190851745229392]
UAV-assisted covert communication is a supporting technology for improving covert performances.
This paper investigates the performance of joint covert and security communication in a tow-hop UAV-assisted wireless system.
arXiv Detail & Related papers (2024-03-14T15:17:56Z) - Graph Koopman Autoencoder for Predictive Covert Communication Against
UAV Surveillance [29.15836826461713]
Low Probability of Detection (LPD) communication aims to obscure the very presence of radio frequency (RF) signals.
Unmanned Aerial Vehicles (UAVs) can detect RF signals from the ground by hovering over specific areas of interest.
We introduce a novel framework that combines graph neural networks (GNN) with Koopman theory to predict the trajectories of multiple fixed-wing UAVs.
arXiv Detail & Related papers (2024-01-23T23:42:55Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
Unmanned aerial vehicles (UAV) as aerial relays are practically appealing for assisting Internet Things (IoT) network.
In this work, we aim to utilize the UAV to assist secure communication between the UAV base station and terminal terminal devices.
arXiv Detail & Related papers (2023-10-03T11:47:01Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks. Reaping these benefits requires CAVs to autonomously navigate to target destinations.
This article proposes solutions using the convergence of communication theory, control theory, and machine learning to enable effective and secure CAV navigation.
arXiv Detail & Related papers (2023-07-05T21:38:36Z) - UAV-aided RF Mapping for Sensing and Connectivity in Wireless Networks [52.14281905671453]
The use of unmanned aerial vehicles (UAV) as flying radio access network (RAN) nodes offers a promising complement to traditional fixed terrestrial deployments.
Radio mapping is one of the challenges related to this task, referred here as radio mapping.
The advantages induced by radio-mapping in terms of connectivity, sensing, and localization performance are illustrated.
arXiv Detail & Related papers (2022-05-06T16:16:08Z) - 5G Network on Wings: A Deep Reinforcement Learning Approach to the
UAV-based Integrated Access and Backhaul [11.197456628712846]
Unmanned aerial vehicle (UAV) based aerial networks offer a promising alternative for fast, flexible, and reliable wireless communications.
In this paper, we study how to control multiple UAV-BSs in both static and dynamic environments.
Deep reinforcement learning algorithm is developed to jointly optimize the three-dimensional placement of these multiple UAV-BSs.
arXiv Detail & Related papers (2022-02-04T07:45:06Z) - UAV-Assisted Communication in Remote Disaster Areas using Imitation
Learning [41.118977289595406]
Damage to cellular towers during natural and man-made disasters can disturb the communication services for cellular users.
One solution to the problem is using unmanned aerial vehicles to augment the desired communication network.
The paper demonstrates the design of a UAV-Assisted Learning (UnVAIL) communication system that relays the cellular users' information to a neighbor base station.
arXiv Detail & Related papers (2021-04-02T00:26:44Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC) and massive machine-type communications (mMTC)
On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in 3D space.
On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference.
arXiv Detail & Related papers (2020-10-19T08:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.