論文の概要: NLP-based Relation Extraction Methods in RE
- arxiv url: http://arxiv.org/abs/2401.12075v1
- Date: Mon, 22 Jan 2024 16:14:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 13:24:01.894063
- Title: NLP-based Relation Extraction Methods in RE
- Title(参考訳): REにおけるNLPに基づく関係抽出法
- Authors: Quim Motger, Xavier Franch
- Abstract要約: モバイルアプリリポジトリは、大規模で適応性の高いクラウドソース情報システムとして、主に科学研究で使用されている。
本稿では,ソフトウェアリソースとデータアーティファクトを組み合わせたMApp-KGを提案する。
私たちのコントリビューションは、モバイルアプリのドメイン固有のカタログをモデル化する知識グラフを自動構築するフレームワークを提供することを目的としています。
- 参考スコア(独自算出の注目度): 4.856095570023289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile app repositories have been largely used in scientific research as
large-scale, highly adaptive crowdsourced information systems. These software
platforms can potentially nourish multiple software and requirements
engineering tasks based on user reviews and other natural language documents,
including feedback analysis, recommender systems and topic modelling.
Consequently, researchers often endeavour to overcome domain-specific
challenges, including integration of heterogeneous data sources, large-scale
data collection and adaptation of a publicly available data set for a given
research scenario. In this paper, we present MApp-KG, a combination of software
resources and data artefacts in the field of mobile app repositories to support
extended knowledge generation tasks. Our contribution aims to provide a
framework for automatically constructing a knowledge graph modelling a
domain-specific catalogue of mobile apps. Complementarily, we distribute
MApp-KG in a public triplestore and as a static data snapshot, which may be
promptly employed for future research and reproduction of our findings.
- Abstract(参考訳): モバイルアプリのリポジトリは、大規模で高度に適応的なクラウドソース情報システムとして、科学研究で広く使われている。
これらのソフトウェアプラットフォームは、ユーザレビューやフィードバック分析、レコメンダシステム、トピックモデリングなど、他の自然言語文書に基づいて、複数のソフトウェアや要件のエンジニアリングタスクを養うことができる。
その結果、研究者は、異種データソースの統合、大規模データ収集、特定の研究シナリオのための公開データセットの適応など、ドメイン固有の課題を克服する努力をしばしば行ないます。
本稿では,モバイルアプリケーションリポジトリの分野におけるソフトウェアリソースとデータアーティファクトの組み合わせであるmapp-kgを提案する。
私たちのコントリビューションは、モバイルアプリのドメイン固有のカタログをモデル化する知識グラフを自動構築するフレームワークを提供することを目的としています。
同時に,MApp-KGをパブリックトリプルストアや静的データスナップショットとして配布し,今後の研究・再生に活用する可能性がある。
関連論文リスト
- Towards a Classification of Open-Source ML Models and Datasets for Software Engineering [52.257764273141184]
オープンソースの事前訓練モデル(PTM)とデータセットは、さまざまな機械学習(ML)タスクに広範なリソースを提供する。
これらのリソースには、ソフトウェア工学(SE)のニーズに合わせた分類がない。
我々は、人気のあるオープンソースのMLリポジトリであるHugging Face (HF)上で、SE指向の分類をPTMとデータセットに適用し、時間とともにPTMの進化を分析する。
論文 参考訳(メタデータ) (2024-11-14T18:52:05Z) - Synthetic Data Generation with Large Language Models for Personalized Community Question Answering [47.300506002171275]
既存のデータセットであるSE-PQAに基づいてSy-SE-PQAを構築します。
以上の結果から,LCMはユーザのニーズに合わせてデータを生成する可能性が高いことが示唆された。
合成データは、たとえ生成されたデータが誤った情報を含むとしても、人書きのトレーニングデータを置き換えることができる。
論文 参考訳(メタデータ) (2024-10-29T16:19:08Z) - GraphAide: Advanced Graph-Assisted Query and Reasoning System [0.04999814847776096]
多様なソースから知識グラフ(KG)を構築し,結果のKGに対してクエリと推論を行う,高度なクエリと推論システムであるGraphAideを導入する。
GraphAideはLarge Language Models(LLM)を利用して、ドメイン固有のデジタルアシスタントを迅速に開発する。
論文 参考訳(メタデータ) (2024-10-29T07:25:30Z) - On the Creation of Representative Samples of Software Repositories [1.8599311233727087]
GitHubのようなソーシャルコーディングプラットフォームの出現により、研究者は研究のソースデータとして使うために何百万ものソフトウェアリポジトリにアクセスできるようになった。
現在のサンプリング法は、しばしばランダムな選択に基づいており、研究とは無関係な変数に依存している。
本稿では,ソフトウェアリポジトリの代表例を作成する手法を提案する。このような代表性は,リポジトリの個体群の特徴と実証研究の要件の両方に適切に一致している。
論文 参考訳(メタデータ) (2024-10-01T12:41:15Z) - On-Device Language Models: A Comprehensive Review [26.759861320845467]
資源制約のあるデバイスに計算コストの高い大規模言語モデルをデプロイする際の課題について検討する。
論文は、デバイス上での言語モデル、その効率的なアーキテクチャ、および最先端の圧縮技術について考察する。
主要モバイルメーカーによるオンデバイス言語モデルのケーススタディは、実世界の応用と潜在的な利益を実証している。
論文 参考訳(メタデータ) (2024-08-26T03:33:36Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - A Metadata-Based Ecosystem to Improve the FAIRness of Research Software [0.3185506103768896]
研究ソフトの再利用は、研究効率と学術交流の中心である。
DataDescエコシステムは、詳細でマシン操作可能なメタデータを備えたソフトウェアインターフェースのデータモデルを記述するためのアプローチである。
論文 参考訳(メタデータ) (2023-06-18T19:01:08Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。