論文の概要: Automated Requirements Relation Extraction
- arxiv url: http://arxiv.org/abs/2401.12075v2
- Date: Thu, 20 Mar 2025 15:30:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:32:18.289422
- Title: Automated Requirements Relation Extraction
- Title(参考訳): 自動要求関係抽出
- Authors: Quim Motger, Xavier Franch,
- Abstract要約: 本章は、自然言語に基づく関係抽出の分野における理論的・実践的基礎について、明確な視点を提供することを目的とする。
まず、最も一般的な要求関係型を含む分野における最も関連性の高い文献に基づいて、要求関係の基礎について述べる。
章の中核は、(i)均衡関係の識別と分類のための自然言語技術(syntactic vs. semantic techniques)と(ii)関係抽出作業のための情報抽出方法の2つのセクションから構成される。
- 参考スコア(独自算出の注目度): 4.110571395660999
- License:
- Abstract: In the context of requirements engineering, relation extraction involves identifying and documenting the associations between different requirements artefacts. When dealing with textual requirements (i.e., requirements expressed using natural language), relation extraction becomes a cognitively challenging task, especially in terms of ambiguity and required effort from domain-experts. Hence, in highly-adaptive, large-scale environments, effective and efficient automated relation extraction using natural language processing techniques becomes essential. In this chapter, we present a comprehensive overview of natural language-based relation extraction from text-based requirements. We initially describe the fundamentals of requirements relations based on the most relevant literature in the field, including the most common requirements relations types. The core of the chapter is composed by two main sections: (i) natural language techniques for the identification and categorization of equirements relations (i.e., syntactic vs. semantic techniques), and (ii) information extraction methods for the task of relation extraction (i.e., retrieval-based vs. machine learning-based methods). We complement this analysis with the state-of-the-art challenges and the envisioned future research directions. Overall, this chapter aims at providing a clear perspective on the theoretical and practical fundamentals in the field of natural language-based relation extraction.
- Abstract(参考訳): 要求工学の文脈では、関係抽出は、異なる要求成果物間の関連を識別し、文書化する。
テキストの要求(すなわち自然言語で表現される要求)を扱うとき、関係抽出は認知的に難しい課題となり、特に曖昧さやドメイン・エキスパートの努力が要求される。
したがって、適応性の高い大規模環境では、自然言語処理技術を用いた効率的かつ効率的な自動関係抽出が不可欠である。
本章では、テキストベースの要求から自然言語に基づく関係抽出を包括的に概説する。
まず、最も一般的な要求関係型を含む、この分野で最も関連性の高い文献に基づいて、要求関係の基礎について述べる。
章の中核は2つの主要なセクションで構成されている。
一 等式関係(統語的対意味的技法)の識別と分類のための自然言語技術及び
二 関係抽出作業のための情報抽出方法(検索ベース対機械学習方式)
我々は、この分析を最先端の課題と将来の研究方向性と補完する。
本章は全体として,自然言語に基づく関係抽出の分野における理論的・実践的基礎について,明確な視点を提供することを目的としている。
関連論文リスト
- Towards a Classification of Open-Source ML Models and Datasets for Software Engineering [52.257764273141184]
オープンソースの事前訓練モデル(PTM)とデータセットは、さまざまな機械学習(ML)タスクに広範なリソースを提供する。
これらのリソースには、ソフトウェア工学(SE)のニーズに合わせた分類がない。
我々は、人気のあるオープンソースのMLリポジトリであるHugging Face (HF)上で、SE指向の分類をPTMとデータセットに適用し、時間とともにPTMの進化を分析する。
論文 参考訳(メタデータ) (2024-11-14T18:52:05Z) - GUI Agents with Foundation Models: A Comprehensive Survey [91.97447457550703]
この調査は(M)LLMベースのGUIエージェントに関する最近の研究を集約する。
重要な課題を特定し,今後の研究方向性を提案する。
この調査が(M)LLMベースのGUIエージェントの分野におけるさらなる進歩を促すことを願っている。
論文 参考訳(メタデータ) (2024-11-07T17:28:10Z) - Synthetic Data Generation with Large Language Models for Personalized Community Question Answering [47.300506002171275]
既存のデータセットであるSE-PQAに基づいてSy-SE-PQAを構築します。
以上の結果から,LCMはユーザのニーズに合わせてデータを生成する可能性が高いことが示唆された。
合成データは、たとえ生成されたデータが誤った情報を含むとしても、人書きのトレーニングデータを置き換えることができる。
論文 参考訳(メタデータ) (2024-10-29T16:19:08Z) - GraphAide: Advanced Graph-Assisted Query and Reasoning System [0.04999814847776096]
多様なソースから知識グラフ(KG)を構築し,結果のKGに対してクエリと推論を行う,高度なクエリと推論システムであるGraphAideを導入する。
GraphAideはLarge Language Models(LLM)を利用して、ドメイン固有のデジタルアシスタントを迅速に開発する。
論文 参考訳(メタデータ) (2024-10-29T07:25:30Z) - On the Creation of Representative Samples of Software Repositories [1.8599311233727087]
GitHubのようなソーシャルコーディングプラットフォームの出現により、研究者は研究のソースデータとして使うために何百万ものソフトウェアリポジトリにアクセスできるようになった。
現在のサンプリング法は、しばしばランダムな選択に基づいており、研究とは無関係な変数に依存している。
本稿では,ソフトウェアリポジトリの代表例を作成する手法を提案する。このような代表性は,リポジトリの個体群の特徴と実証研究の要件の両方に適切に一致している。
論文 参考訳(メタデータ) (2024-10-01T12:41:15Z) - On-Device Language Models: A Comprehensive Review [26.759861320845467]
資源制約のあるデバイスに計算コストの高い大規模言語モデルをデプロイする際の課題について検討する。
論文は、デバイス上での言語モデル、その効率的なアーキテクチャ、および最先端の圧縮技術について考察する。
主要モバイルメーカーによるオンデバイス言語モデルのケーススタディは、実世界の応用と潜在的な利益を実証している。
論文 参考訳(メタデータ) (2024-08-26T03:33:36Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - A Metadata-Based Ecosystem to Improve the FAIRness of Research Software [0.3185506103768896]
研究ソフトの再利用は、研究効率と学術交流の中心である。
DataDescエコシステムは、詳細でマシン操作可能なメタデータを備えたソフトウェアインターフェースのデータモデルを記述するためのアプローチである。
論文 参考訳(メタデータ) (2023-06-18T19:01:08Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。