論文の概要: "The teachers are confused as well": A Multiple-Stakeholder Ethics
Discussion on Large Language Models in Computing Education
- arxiv url: http://arxiv.org/abs/2401.12453v1
- Date: Tue, 23 Jan 2024 02:43:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 17:07:25.512641
- Title: "The teachers are confused as well": A Multiple-Stakeholder Ethics
Discussion on Large Language Models in Computing Education
- Title(参考訳): 「先生も混乱している」--コンピュータ教育における大規模言語モデルに関するマルチテイクホルダー倫理論
- Authors: Kyrie Zhixuan Zhou, Zachary Kilhoffer, Madelyn Rose Sanfilippo, Ted
Underwood, Ece Gumusel, Mengyi Wei, Abhinav Choudhry, Jinjun Xiong
- Abstract要約: 大きな言語モデル(LLM)は急速に進歩し、人々の生活に良くも悪くも影響を与えています。
高等教育においては、学生のLDMの誤用や教育成果の低下といった懸念が浮かび上がっている。
我々は,高等教育コンピュータサイエンスにおける利害関係者インタビューのケーススタディを行った。
- 参考スコア(独自算出の注目度): 17.25008833760501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are advancing quickly and impacting people's
lives for better or worse. In higher education, concerns have emerged such as
students' misuse of LLMs and degraded education outcomes. To unpack the ethical
concerns of LLMs for higher education, we conducted a case study consisting of
stakeholder interviews (n=20) in higher education computer science. We found
that students use several distinct mental models to interact with LLMs - LLMs
serve as a tool for (a) writing, (b) coding, and (c) information retrieval,
which differ somewhat in ethical considerations. Students and teachers brought
up ethical issues that directly impact them, such as inaccurate LLM responses,
hallucinations, biases, privacy leakage, and academic integrity issues.
Participants emphasized the necessity of guidance and rules for the use of LLMs
in higher education, including teaching digital literacy, rethinking education,
and having cautious and contextual policies. We reflect on the ethical
challenges and propose solutions.
- Abstract(参考訳): 大規模言語モデル(llm)は急速に進歩し、人々の生活に悪影響を与えている。
高等教育においては、学生のLDMの誤用や教育成果の低下といった懸念が浮かび上がっている。
高等教育におけるLCMの倫理的関心を解き放つため,高等教育コンピュータサイエンスにおける利害関係者インタビュー(n=20)によるケーススタディを行った。
我々は、学生が複数の異なるメンタルモデルを使用してLLMと対話することを発見した。
(a)筆記
(b)コーディング,及び
(c)情報検索は倫理的考察において若干異なる。
学生や教師は、不正確なLSM反応、幻覚、偏見、プライバシー漏洩、学術的完全性問題など、彼らに直接的な影響を及ぼす倫理的な問題を提起した。
参加者は、デジタルリテラシーの教育、教育の再検討、慎重かつ文脈的な政策など、高等教育におけるllmの使用のための指導と規則の必要性を強調した。
倫理的課題を反映し、解決策を提案する。
関連論文リスト
- Position: LLMs Can be Good Tutors in Foreign Language Education [87.88557755407815]
我々は、外国語教育(FLE)において、大きな言語モデル(LLM)が効果的な家庭教師として機能する可能性を主張する。
具体的には、(1)データエンハンサーとして、(2)学習教材の作成や学生シミュレーションとして、(2)タスク予測器として、学習者の評価や学習経路の最適化に、(3)エージェントとして、そして、パーソナライズされた包括的教育を可能にする3つの重要な役割を果たせる。
論文 参考訳(メタデータ) (2025-02-08T06:48:49Z) - Embracing AI in Education: Understanding the Surge in Large Language Model Use by Secondary Students [53.20318273452059]
OpenAIのChatGPTのような大規模言語モデル(LLM)は、新しい教育の道を開いた。
学校制限にもかかわらず,中高生300人以上を対象に調査を行ったところ,学生の70%がLDMを利用していることがわかった。
我々は、対象特化モデル、パーソナライズドラーニング、AI教室など、このような問題に対処するいくつかのアイデアを提案する。
論文 参考訳(メタデータ) (2024-11-27T19:19:34Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
本稿では, LLMのイデオロギー的姿勢が創造者の世界観を反映していることを示す。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - Exploring Knowledge Tracing in Tutor-Student Dialogues using LLMs [49.18567856499736]
本研究では,大規模言語モデル(LLM)が対話学習を支援することができるかどうかを検討する。
我々は,学習者の知識レベルを対話全体にわたって追跡するために,ラベル付きデータに知識追跡(KT)手法を適用した。
我々は,2つの学習対話データセットの実験を行い,従来のKT手法よりも学生の反応の正しさを予測できる新しいLCM-based method LLMKTが優れていることを示す。
論文 参考訳(メタデータ) (2024-09-24T22:31:39Z) - I don't trust you (anymore)! -- The effect of students' LLM use on Lecturer-Student-Trust in Higher Education [0.0]
Open AIのChatGPTのようなプラットフォームにおける大規模言語モデル(LLM)は、大学生の間で急速に採用されている。
学生によるLLMの使用は、情報と手続きの正義にどのように影響し、チーム信頼と期待されるチームパフォーマンスに影響を与えるか?
本研究は,LLM使用の公平さよりも,学生利用の透明性に重点を置いていることを示唆する。
論文 参考訳(メタデータ) (2024-06-21T05:35:57Z) - Insights from Social Shaping Theory: The Appropriation of Large Language Models in an Undergraduate Programming Course [0.9718746651638346]
大規模言語モデル(LLM)は、コードを生成、デバッグ、説明することができる。
本研究は,学生の社会的知覚が自身のLLM利用にどのように影響するかを考察する。
論文 参考訳(メタデータ) (2024-06-10T16:40:14Z) - Student Perspectives on Using a Large Language Model (LLM) for an Assignment on Professional Ethics [0.0]
LLM(Large Language Models)の出現は、カリキュラム、評価、学生の能力にどのような影響を与えるかについて、教育者の間で真剣な議論を始めた。
本報告では,コンピュータ・マスターの学生がキャリアに必要とする倫理に関する課題を含む,専門的能力のコース内での課題について述べる。
論文 参考訳(メタデータ) (2024-04-09T09:03:47Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
大規模言語モデル(LLM)は、個々の要求を解釈することでこの問題を解決する可能性を提供する。
本稿では, 数学, 文章, プログラミング, 推論, 知識に基づく質問応答など, 教育能力に関する最近のLLM研究を概観する。
論文 参考訳(メタデータ) (2023-12-27T14:37:32Z) - Challenges and Contributing Factors in the Utilization of Large Language
Models (LLMs) [10.039589841455136]
本稿では,大規模言語モデル (LLM) がニッチ分野における専門的な質問に対して正確な回答を提供するのに苦慮する領域特異性の問題について考察する。
トレーニングデータを多様化し、きめ細かいモデルを作成し、透明性と解釈可能性を高め、倫理と公正なトレーニングを取り入れることが推奨されている。
論文 参考訳(メタデータ) (2023-10-20T08:13:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。