Phase-controlled robust tripartite quantum entanglement in cavity-magnon optomechanics
- URL: http://arxiv.org/abs/2501.18218v1
- Date: Thu, 30 Jan 2025 09:19:00 GMT
- Title: Phase-controlled robust tripartite quantum entanglement in cavity-magnon optomechanics
- Authors: Jing-Xue Liu, Ya-Feng Jiao, Bin Yin, Hong-Yun Yu, Ruo-Chen Wang, Hui Jing,
- Abstract summary: We generate and manipulate tripartite entangled state of photons, phonons, and magnons within a hybrid cavity magnomechanical system.
Our findings open up a promising way to manipulate and protect fragile tripartite entanglement.
- Score: 8.007796307125288
- License:
- Abstract: The preparation of highly entangled states involving multiparticle systems is of crucial importance in quantum physics, playing a fundamental role in exploring the nature of quantum mechanics and offering essential quantum resources for nascent quantum technologies that surpass classical limits. Here we present how to generate and manipulate tripartite entangled state of photons, phonons, and magnons within a hybrid cavity magnomechanical system. It is shown that by simultaneously applying two coherent driving fields to this system in opposite input directions, it enables a coherent and effective way to regulate the magnomechanical interaction by tuning the phase difference of the driving fields. Based on this feature, it is found that the tripartite entanglement also becomes phase-dependent and can be enhanced for certain phase difference. More interestingly, it is shown that the robustness of tripartite entanglement against environmental thermal noises can also be improved by choosing proper phase difference of the driving fields. Our findings open up a promising way to manipulate and protect fragile tripartite entanglement, which is applicable to a wide range of quantum protocols that require multipartite entangled resources such as quantum communication and quantum metrology.
Related papers
- Quantumness of electron transport in quantum dot devices through Leggett-Garg inequalities: A non-equilibrium Green's function approach [0.0]
We study the non-Markovian dynamics of quantum systems interacting with reservoirs.
Our approach is likely to open up new possibilities of witnessing the quantumness for other quantum many-body systems.
arXiv Detail & Related papers (2024-01-23T05:54:59Z) - Tripartite quantum entanglement with squeezed optomechanics [3.1938039621723724]
We propose how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system.
The advantages of this system are twofold: (i) one can effectively regulate the light-mirror interactions by introducing a squeezed intracavity mode via the OPA; (ii) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely.
arXiv Detail & Related papers (2023-11-20T02:00:17Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Quantum control methods for robust entanglement of trapped ions [0.0]
A major obstacle in the way of practical quantum computing is achieving scalable and robust high-fidelity entangling gates.
quantum control has become an essential tool, as it can make the entangling interaction resilient to sources of noise.
arXiv Detail & Related papers (2022-06-13T11:48:05Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Tailoring the degree of entanglement of two coherently coupled quantum
emitters [0.0]
Controlled molecular entanglement can serve as a test-bench to decipher more complex physical or biological mechanisms governed by the coherent coupling.
We implement hyperspectral imaging to identify pairs of coupled organic molecules trapped in a low temperature matrix.
We also demonstrate far-field selective excitation of the long-lived subradiant delocalized states with a laser field tailored in amplitude and phase.
arXiv Detail & Related papers (2021-09-22T08:30:59Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Basis-independent system-environment coherence is necessary to detect
magnetic field direction in an avian-inspired quantum magnetic sensor [77.34726150561087]
We consider an avian-inspired quantum magnetic sensor composed of two radicals with a third "scavenger" radical under the influence of a collisional environment.
We show that basis-independent coherence, in which the initial system-environment state is non-maximally mixed, is necessary for optimal performance.
arXiv Detail & Related papers (2020-11-30T17:19:17Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.