Balancing the AI Strength of Roles in Self-Play Training with Regret
Matching+
- URL: http://arxiv.org/abs/2401.12557v2
- Date: Thu, 1 Feb 2024 03:22:22 GMT
- Title: Balancing the AI Strength of Roles in Self-Play Training with Regret
Matching+
- Authors: Xiaoxi Wang
- Abstract summary: A generalized model capable of controlling any character within the game presents a viable option.
This strategy not only conserves computational resources and time during the training phase but also reduces resource requirements during deployment.
A simple method is introduced based on Regret Matching+, which facilitates a more balanced performance of strength by the model when controlling various roles.
- Score: 1.5591858554014466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When training artificial intelligence for games encompassing multiple roles,
the development of a generalized model capable of controlling any character
within the game presents a viable option. This strategy not only conserves
computational resources and time during the training phase but also reduces
resource requirements during deployment. training such a generalized model
often encounters challenges related to uneven capabilities when controlling
different roles. A simple method is introduced based on Regret Matching+, which
facilitates a more balanced performance of strength by the model when
controlling various roles.
Related papers
- SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning [27.20778530252474]
SPIRAL is a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves.<n>Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly.<n>Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis.
arXiv Detail & Related papers (2025-06-30T17:58:13Z) - Bigger, Regularized, Categorical: High-Capacity Value Functions are Efficient Multi-Task Learners [60.75160178669076]
We show that the use of high-capacity value models trained via cross-entropy and conditioned on learnable task embeddings addresses the problem of task interference in online reinforcement learning.<n>We test our approach on 7 multi-task benchmarks with over 280 unique tasks, spanning high degree-of-freedom humanoid control and discrete vision-based RL.
arXiv Detail & Related papers (2025-05-29T06:41:45Z) - Divide-Fuse-Conquer: Eliciting "Aha Moments" in Multi-Scenario Games [36.162843233798455]
Large language models (LLMs) have been observed to suddenly exhibit advanced reasoning abilities during reinforcement learning (RL)<n>We propose Divide-Fuse-Conquer, a framework designed to enhance generalization in multi-scenario RL.
arXiv Detail & Related papers (2025-05-22T08:52:21Z) - Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal [54.93261535899478]
In real-world applications, such as robotic control of reinforcement learning, the tasks are changing, and new tasks arise in a sequential order.
This situation poses the new challenge of plasticity-stability trade-off for training an agent who can adapt to task changes and retain acquired knowledge.
We propose a rehearsal-based continual diffusion model, called Continual diffuser (CoD), to endow the diffuser with the capabilities of quick adaptation (plasticity) and lasting retention (stability)
arXiv Detail & Related papers (2024-09-04T08:21:47Z) - Mastering the Digital Art of War: Developing Intelligent Combat Simulation Agents for Wargaming Using Hierarchical Reinforcement Learning [0.0]
dissertation proposes a comprehensive approach, including targeted observation abstractions, multi-model integration, a hybrid AI framework, and an overarching hierarchical reinforcement learning framework.
Our localized observation abstraction using piecewise linear spatial decay simplifies the RL problem, enhancing computational efficiency and demonstrating superior efficacy over traditional global observation methods.
Our hybrid AI framework synergizes RL with scripted agents, leveraging RL for high-level decisions and scripted agents for lower-level tasks, enhancing adaptability, reliability, and performance.
arXiv Detail & Related papers (2024-08-23T18:50:57Z) - Self-Supervised Reinforcement Learning that Transfers using Random
Features [41.00256493388967]
We propose a self-supervised reinforcement learning method that enables the transfer of behaviors across tasks with different rewards.
Our method is self-supervised in that it can be trained on offline datasets without reward labels, but can then be quickly deployed on new tasks.
arXiv Detail & Related papers (2023-05-26T20:37:06Z) - Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRL is a framework for solving sequential decision-making problems.
It exploits the combination of reinforcement learning and latent variable generative models.
We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training.
arXiv Detail & Related papers (2022-04-18T22:02:32Z) - Learning to Transfer Role Assignment Across Team Sizes [48.43860606706273]
We propose a framework to learn role assignment and transfer across team sizes.
We demonstrate that re-using the role-based credit assignment structure can foster the learning process of larger reinforcement learning teams.
arXiv Detail & Related papers (2022-04-17T11:22:01Z) - Reinforcement Learning Agents in Colonel Blotto [0.0]
We focus on a specific instance of agent-based models, which uses reinforcement learning (RL) to train the agent how to act in its environment.
We find that the RL agent handily beats a single opponent, and still performs quite well when the number of opponents are increased.
We also analyze the RL agent and look at what strategies it has arrived by looking at the actions that it has given the highest and lowest Q-values.
arXiv Detail & Related papers (2022-04-04T16:18:01Z) - Robust Reinforcement Learning as a Stackelberg Game via
Adaptively-Regularized Adversarial Training [43.97565851415018]
Robust Reinforcement Learning (RL) focuses on improving performances under model errors or adversarial attacks.
Most of the existing literature models RARL as a zero-sum simultaneous game with Nash equilibrium as the solution concept.
We introduce a novel hierarchical formulation of robust RL - a general-sum Stackelberg game model called RRL-Stack.
arXiv Detail & Related papers (2022-02-19T03:44:05Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
Real-world embodied learning, such as that performed by humans and animals, is situated in a continual, non-episodic world.
Common benchmark tasks in RL are episodic, with the environment resetting between trials to provide the agent with multiple attempts.
This discrepancy presents a major challenge when attempting to take RL algorithms developed for episodic simulated environments and run them on real-world platforms.
arXiv Detail & Related papers (2021-12-17T16:28:06Z) - Independent Learning in Stochastic Games [16.505046191280634]
We present the model of games for multi-agent learning in dynamic environments.
We focus on the development of simple and independent learning dynamics for games.
We present our recently proposed simple and independent learning dynamics that guarantee convergence in zero-sum games.
arXiv Detail & Related papers (2021-11-23T09:27:20Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
We make the first attempt to explore a universal multi-agent reinforcement learning pipeline, designing one single architecture to fit tasks.
Unlike previous RNN-based models, we utilize a transformer-based model to generate a flexible policy.
The proposed model, named as Universal Policy Decoupling Transformer (UPDeT), further relaxes the action restriction and makes the multi-agent task's decision process more explainable.
arXiv Detail & Related papers (2021-01-20T07:24:24Z) - Learning from Learners: Adapting Reinforcement Learning Agents to be
Competitive in a Card Game [71.24825724518847]
We present a study on how popular reinforcement learning algorithms can be adapted to learn and to play a real-world implementation of a competitive multiplayer card game.
We propose specific training and validation routines for the learning agents, in order to evaluate how the agents learn to be competitive and explain how they adapt to each others' playing style.
arXiv Detail & Related papers (2020-04-08T14:11:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.