Cognitive Insights and Stable Coalition Matching for Fostering Multi-Agent Cooperation
- URL: http://arxiv.org/abs/2405.18044v1
- Date: Tue, 28 May 2024 10:59:33 GMT
- Title: Cognitive Insights and Stable Coalition Matching for Fostering Multi-Agent Cooperation
- Authors: Jiaqi Shao, Tianjun Yuan, Tao Lin, Xuanyu Cao, Bing Luo,
- Abstract summary: We propose a novel matching coalition mechanism that leverages the strengths of agents with different ToM levels.
Our work demonstrates the potential of leveraging ToM to create more sophisticated and human-like coordination strategies.
- Score: 6.536780912510439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitive abilities, such as Theory of Mind (ToM), play a vital role in facilitating cooperation in human social interactions. However, our study reveals that agents with higher ToM abilities may not necessarily exhibit better cooperative behavior compared to those with lower ToM abilities. To address this challenge, we propose a novel matching coalition mechanism that leverages the strengths of agents with different ToM levels by explicitly considering belief alignment and specialized abilities when forming coalitions. Our proposed matching algorithm seeks to find stable coalitions that maximize the potential for cooperative behavior and ensure long-term viability. By incorporating cognitive insights into the design of multi-agent systems, our work demonstrates the potential of leveraging ToM to create more sophisticated and human-like coordination strategies that foster cooperation and improve overall system performance.
Related papers
- CaPo: Cooperative Plan Optimization for Efficient Embodied Multi-Agent Cooperation [98.11670473661587]
CaPo improves cooperation efficiency with two phases: 1) meta-plan generation, and 2) progress-adaptive meta-plan and execution.
Experimental results on the ThreeDworld Multi-Agent Transport and Communicative Watch-And-Help tasks demonstrate that CaPo achieves much higher task completion rate and efficiency compared with state-of-the-arts.
arXiv Detail & Related papers (2024-11-07T13:08:04Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
Theory of Mind (ToM) significantly impacts human collaboration and communication as a crucial capability to understand others.
Mutual Theory of Mind (MToM) arises when AI agents with ToM capability collaborate with humans.
We find that the agent's ToM capability does not significantly impact team performance but enhances human understanding of the agent.
arXiv Detail & Related papers (2024-09-13T13:19:48Z) - Enhancing Cooperation through Selective Interaction and Long-term Experiences in Multi-Agent Reinforcement Learning [10.932974027102619]
This study introduces a computational framework based on multi-agent reinforcement learning in the spatial Prisoner's Dilemma game.
By modelling each agent using two distinct Q-networks, we disentangle the coevolutionary dynamics between cooperation and interaction.
arXiv Detail & Related papers (2024-05-04T12:42:55Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Emergent Cooperation under Uncertain Incentive Alignment [7.906156032228933]
We study how cooperation can arise among reinforcement learning agents in scenarios characterised by infrequent encounters.
We study the effects of mechanisms, such as reputation and intrinsic rewards, that have been proposed in the literature to foster cooperation in mixed-motives environments.
arXiv Detail & Related papers (2024-01-23T10:55:54Z) - Confounding-Robust Policy Improvement with Human-AI Teams [9.823906892919746]
We propose a novel solution to address unobserved confounding in human-AI collaboration by employing the marginal sensitivity model (MSM)
Our approach combines domain expertise with AI-driven statistical modeling to account for potential confounders that may otherwise remain hidden.
arXiv Detail & Related papers (2023-10-13T02:39:52Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Iterated Reasoning with Mutual Information in Cooperative and Byzantine
Decentralized Teaming [0.0]
We show that reformulating an agent's policy to be conditional on the policies of its teammates inherently maximizes Mutual Information (MI) lower-bound when optimizing under Policy Gradient (PG)
Our approach, InfoPG, outperforms baselines in learning emergent collaborative behaviors and sets the state-of-the-art in decentralized cooperative MARL tasks.
arXiv Detail & Related papers (2022-01-20T22:54:32Z) - Emergence of Theory of Mind Collaboration in Multiagent Systems [65.97255691640561]
We propose an adaptive training algorithm to develop effective collaboration between agents with ToM.
We evaluate our algorithms with two games, where our algorithm surpasses all previous decentralized execution algorithms without modeling ToM.
arXiv Detail & Related papers (2021-09-30T23:28:00Z) - Joint Attention for Multi-Agent Coordination and Social Learning [108.31232213078597]
We show that joint attention can be useful as a mechanism for improving multi-agent coordination and social learning.
Joint attention leads to higher performance than a competitive centralized critic baseline across multiple environments.
Taken together, these findings suggest that joint attention may be a useful inductive bias for multi-agent learning.
arXiv Detail & Related papers (2021-04-15T20:14:19Z) - Evolution of Coordination in Pairwise and Multi-player Interactions via
Prior Commitments [0.8701566919381222]
We show that prior commitments can be a viable evolutionary mechanism for enhancing coordination.
In multiparty interactions, prior commitments prove to be crucial when a high level of group diversity is required.
Our analysis provides new insights into the complexity and beauty of behavioral evolution driven by humans' capacity for commitment.
arXiv Detail & Related papers (2020-09-24T14:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.