論文の概要: Gas trap prediction from 3D seismic and well test data using machine
learning
- arxiv url: http://arxiv.org/abs/2401.12717v1
- Date: Tue, 23 Jan 2024 12:39:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 15:42:23.520722
- Title: Gas trap prediction from 3D seismic and well test data using machine
learning
- Title(参考訳): 機械学習を用いた3次元地震探査データからのガストラップ予測
- Authors: Dmitry Ivlev
- Abstract要約: 本研究の目的は,3次元地震データとガス井戸試験からガストラップを予測する手法を作成し,適用することである。
本論文は, 地震波場内におけるガス飽和度と濾過特性の確立したボリュームを選択することにより, トレーニングデータセット作成へのアプローチを定式化した。
その結果, ガス貯留層に対する研究空間に属するキャリブレーション確率の立方体が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aim of this work is to create and apply a methodological approach for
predicting gas traps from 3D seismic data and gas well testing. The paper
formalizes the approach to creating a training dataset by selecting volumes
with established gas saturation and filtration properties within the seismic
wavefield. The training dataset thus created is used in a process stack of
sequential application of data processing methods and ensemble machine learning
algorithms. As a result, a cube of calibrated probabilities of belonging of the
study space to gas reservoirs was obtained. The high efficiency of this
approach is shown on a delayed test sample of three wells (blind wells). The
final value of the gas reservoir prediction quality metric f1 score was
0.893846.
- Abstract(参考訳): 本研究の目的は,3次元地震データとガス井戸試験からガストラップを予測する手法を作成し,適用することである。
本論文は, 確立されたガス飽和度と濾過特性を有するボリュームを地震波場内で選択することによって, トレーニングデータセットを作成する手法を定式化する。
このように作成されたトレーニングデータセットは、データ処理方法とアンサンブル機械学習アルゴリズムの逐次適用のプロセススタックで使用される。
その結果, ガス貯留層に対する研究空間のキャリブレーション確率の立方体が得られた。
このアプローチの高効率性は、3つの井戸(盲井戸)の遅れた試験サンプルで示される。
ガス貯留層予測品質指標f1スコアの最終値は 0.893846 であった。
関連論文リスト
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
本稿では,局所レーングラフの推定精度を向上させるために,アーキテクチャと損失の定式化を提案する。
提案手法は,中心線をクラスタ中心とすることで,対象を中心線に割り当てることを学ぶ。
提案手法は既存の3次元オブジェクト検出手法の出力を用いて,大幅な性能向上を実現することができることを示す。
論文 参考訳(メタデータ) (2023-07-20T15:21:28Z) - Enhancing Petrophysical Studies with Machine Learning: A Field Case
Study on Permeability Prediction in Heterogeneous Reservoirs [0.0]
この研究では、ニューラルネットワーク(ANN)、ランダムフォレスト(RFC)、サポートベクトルマシン(SVM)の3つの機械学習アルゴリズムが採用された。
本研究の主な目的は,透過性予測における3つの機械学習アルゴリズムの有効性を比較し,最適予測法を決定することである。
この発見は貯水池のシミュレーションを改善し、より正確に将来の井戸を見つけるために使われる。
論文 参考訳(メタデータ) (2023-05-11T21:23:37Z) - Generalization with Reverse-Calibration of Well and Seismic Data Using
Machine Learning Methods for Complex Reservoirs Predicting During Early-Stage
Geological Exploration Oil Field [0.0]
本研究の目的は, 研究領域に広がる炭化水素貯水池の確率を予測するための自律的アプローチを開発し, 適用することである。
この手法は二項分類の問題に機械学習アルゴリズムを用いる。
地震波の属性は予測器として使用される。
論文 参考訳(メタデータ) (2023-04-06T13:09:33Z) - MV-JAR: Masked Voxel Jigsaw and Reconstruction for LiDAR-Based
Self-Supervised Pre-Training [58.07391711548269]
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training
論文 参考訳(メタデータ) (2023-03-23T17:59:02Z) - Noise-Resistant Deep Metric Learning with Probabilistic Instance
Filtering [59.286567680389766]
ノイズラベルは現実世界のデータによく見られ、ディープニューラルネットワークの性能劣化を引き起こす。
DMLのための確率的ランク付けに基づくメモリを用いたインスタンス選択(PRISM)手法を提案する。
PRISMはラベルがクリーンである確率を計算し、潜在的にノイズの多いサンプルをフィルタリングする。
論文 参考訳(メタデータ) (2021-08-03T12:15:25Z) - Data-driven Full-waveform Inversion Surrogate using Conditional
Generative Adversarial Networks [0.0]
フル波形インバージョン(FWI)速度モデリングは、正確で詳細な速度場モデルを提供する反復的な高度な技術です。
本研究では,複数の入力を持つ条件付き生成逆数ネットワーク(cGAN)を用いて,FWIによって得られた速度場モデルを生成する手法を提案する。
論文 参考訳(メタデータ) (2021-04-30T21:41:24Z) - PREPRINT: Comparison of deep learning and hand crafted features for
mining simulation data [7.214140640112874]
本稿では,高次元データセットから有意な結果を自動抽出する作業について述べる。
このようなデータを処理することができる深層学習手法を提案し、シミュレーションデータに関する関連するタスクを解決するように訓練することができる。
16,000フローフィールドを含む翼まわりの流れ場の2次元シミュレーションの大規模なデータセットをコンパイルし,比較を行った。
論文 参考訳(メタデータ) (2021-03-11T09:28:00Z) - Hybrid and Automated Machine Learning Approaches for Oil Fields
Development: the Case Study of Volve Field, North Sea [58.720142291102135]
本稿では,意思決定プロセスを支援する分野開発タスクにおけるインテリジェントなアプローチの利用について述べる。
我々は,油田立地最適化の問題と,その中の2つの課題に注目し,石油生産量推定の品質向上と貯水池特性の評価を行う。
実装されたアプローチは、異なる油田を解析したり、同様の物理問題に適応することができる。
論文 参考訳(メタデータ) (2021-03-03T18:51:46Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
新たに取得した破砕孔データによって課される地球化学的および空間的制約に基づいて, モデル表面を再構成するバイーシアンワープ法が提案されている。
本稿では,このワーピングフレームワークに機械学習を組み込むことにより,可能性の一般化を図る。
その基礎は、p(g|c) が p(y(c)|g と似た役割を果たすような地質領域の確率のベイズ計算によって構成される。
論文 参考訳(メタデータ) (2021-02-15T10:37:52Z) - Data driven Dirichlet sampling on manifolds [0.0]
提案手法は, データの観測を行う基礎となる多様体を完全に尊重し, 少ない計算労力で大量のサンプリングを行う。
例えば、ニューラルネットワークのトレーニングプロセスや不確実性解析や最適化において、これは非常に役に立ちます。
論文 参考訳(メタデータ) (2020-12-29T11:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。