Performance Analysis of Support Vector Machine (SVM) on Challenging
Datasets for Forest Fire Detection
- URL: http://arxiv.org/abs/2401.12924v2
- Date: Thu, 7 Mar 2024 20:59:19 GMT
- Title: Performance Analysis of Support Vector Machine (SVM) on Challenging
Datasets for Forest Fire Detection
- Authors: Ankan Kar, Nirjhar Nath, Utpalraj Kemprai, Aman
- Abstract summary: This article examines the performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets.
SVMs exhibit proficiency in recognizing patterns associated with fire within images.
The knowledge gained from this study aids in the development of efficient forest fire detection systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article delves into the analysis of performance and utilization of
Support Vector Machines (SVMs) for the critical task of forest fire detection
using image datasets. With the increasing threat of forest fires to ecosystems
and human settlements, the need for rapid and accurate detection systems is of
utmost importance. SVMs, renowned for their strong classification capabilities,
exhibit proficiency in recognizing patterns associated with fire within images.
By training on labeled data, SVMs acquire the ability to identify distinctive
attributes associated with fire, such as flames, smoke, or alterations in the
visual characteristics of the forest area. The document thoroughly examines the
use of SVMs, covering crucial elements like data preprocessing, feature
extraction, and model training. It rigorously evaluates parameters such as
accuracy, efficiency, and practical applicability. The knowledge gained from
this study aids in the development of efficient forest fire detection systems,
enabling prompt responses and improving disaster management. Moreover, the
correlation between SVM accuracy and the difficulties presented by
high-dimensional datasets is carefully investigated, demonstrated through a
revealing case study. The relationship between accuracy scores and the
different resolutions used for resizing the training datasets has also been
discussed in this article. These comprehensive studies result in a definitive
overview of the difficulties faced and the potential sectors requiring further
improvement and focus.
Related papers
- Comprehensive and Comparative Analysis between Transfer Learning and Custom Built VGG and CNN-SVM Models for Wildfire Detection [1.8616107180090005]
This paper examines the efficiency and effectiveness of transfer learning in the context of wildfire detection.
Three purpose-built models -- Visual Geometry Group (VGG)-7, VGG-10, and Convolutional Neural Network (CNN)-Support Vector Machine(SVM) CNN-SVM -- are rigorously compared.
We trained and evaluated these models using a dataset that captures the complexities of wildfires.
arXiv Detail & Related papers (2024-11-12T20:30:23Z) - Exploring Feature Importance and Explainability Towards Enhanced ML-Based DoS Detection in AI Systems [3.3150909292716477]
Denial of Service (DoS) attacks pose a significant threat in the realm of AI systems security.
statistical and machine learning (ML)-based DoS classification and detection approaches utilize a broad range of feature selection mechanisms to select a feature subset from networking traffic datasets.
In this paper, we investigate the importance of feature selection in improving ML-based detection of DoS attacks.
arXiv Detail & Related papers (2024-11-04T19:51:08Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - Visual Context-Aware Person Fall Detection [52.49277799455569]
We present a segmentation pipeline to semi-automatically separate individuals and objects in images.
Background objects such as beds, chairs, or wheelchairs can challenge fall detection systems, leading to false positive alarms.
We demonstrate that object-specific contextual transformations during training effectively mitigate this challenge.
arXiv Detail & Related papers (2024-04-11T19:06:36Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - EvCenterNet: Uncertainty Estimation for Object Detection using
Evidential Learning [26.535329379980094]
EvCenterNet is a novel uncertainty-aware 2D object detection framework.
We employ evidential learning to estimate both classification and regression uncertainties.
We train our model on the KITTI dataset and evaluate it on challenging out-of-distribution datasets.
arXiv Detail & Related papers (2023-03-06T11:07:11Z) - Supervised classification methods applied to airborne hyperspectral
images: Comparative study using mutual information [0.0]
This paper investigates the performance of four supervised learning algorithms, namely, Support Vector Machines SVM, Random Forest RF, K-Nearest Neighbors KNN and Linear Discriminant Analysis LDA.
The experiments have been performed on three real hyperspectral datasets taken from the NASA's Airborne Visible/Infrared Imaging Spectrometer Sensor AVIRIS and the Reflective Optics System Imaging Spectrometer ROSIS sensors.
arXiv Detail & Related papers (2022-10-27T13:39:08Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Few-Shot Relation Learning with Attention for EEG-based Motor Imagery
Classification [11.873435088539459]
Brain-Computer Interfaces (BCI) based on Electroencephalography (EEG) signals have received a lot of attention.
Motor imagery (MI) data can be used to aid rehabilitation as well as in autonomous driving scenarios.
classification of MI signals is vital for EEG-based BCI systems.
arXiv Detail & Related papers (2020-03-03T02:34:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.