論文の概要: Bayesian Semi-structured Subspace Inference
- arxiv url: http://arxiv.org/abs/2401.12950v1
- Date: Tue, 23 Jan 2024 18:15:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 14:42:24.750847
- Title: Bayesian Semi-structured Subspace Inference
- Title(参考訳): ベイズ半構造部分空間推論
- Authors: Daniel Dold, David R\"ugamer, Beate Sick, Oliver D\"urr
- Abstract要約: 半構造回帰モデルは、解釈可能な構造と複雑な非構造的特徴効果の合同モデリングを可能にする。
部分空間推論を用いた半構造化回帰モデルに対するベイズ近似を提案する。
提案手法は,シミュレーションおよび実世界のデータセット間での競合予測性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-structured regression models enable the joint modeling of interpretable
structured and complex unstructured feature effects. The structured model part
is inspired by statistical models and can be used to infer the input-output
relationship for features of particular importance. The complex unstructured
part defines an arbitrary deep neural network and thereby provides enough
flexibility to achieve competitive prediction performance. While these models
can also account for aleatoric uncertainty, there is still a lack of work on
accounting for epistemic uncertainty. In this paper, we address this problem by
presenting a Bayesian approximation for semi-structured regression models using
subspace inference. To this end, we extend subspace inference for joint
posterior sampling from a full parameter space for structured effects and a
subspace for unstructured effects. Apart from this hybrid sampling scheme, our
method allows for tunable complexity of the subspace and can capture multiple
minima in the loss landscape. Numerical experiments validate our approach's
efficacy in recovering structured effect parameter posteriors in
semi-structured models and approaching the full-space posterior distribution of
MCMC for increasing subspace dimension. Further, our approach exhibits
competitive predictive performance across simulated and real-world datasets.
- Abstract(参考訳): 半構造回帰モデルは、解釈可能な構造と複雑な非構造的特徴効果の合同モデリングを可能にする。
構造化モデルは統計モデルにインスパイアされ、特に重要な特徴に対して入出力関係を推測することができる。
複雑な非構造部は任意のディープニューラルネットワークを定義し、競争予測性能を達成するのに十分な柔軟性を提供する。
これらのモデルはまた、摂動的不確かさを考慮できるが、認識的不確実性を説明するための作業が不足している。
本稿では,部分空間推論を用いた半構造化回帰モデルに対するベイズ近似を用いてこの問題に対処する。
この目的のために、構造的効果のための全パラメータ空間と非構造的効果のための部分空間から、関節後部サンプリングのための部分空間推論を拡張する。
このハイブリッドサンプリング方式とは別に,本手法は部分空間の可変的な複雑性を許容し,ロスランドスケープにおいて複数のミニマをキャプチャできる。
数値実験により,半構造化モデルにおける構造的効果パラメータ後方の復元と,部分空間次元拡大のためのmcmcのフルスペース後方分布へのアプローチの有効性が検証された。
さらに,シミュレーションおよび実世界のデータセット間での競合予測性能を示す。
関連論文リスト
- A spatiotemporal deep learning framework for prediction of crack dynamics in heterogeneous solids: efficient mapping of concrete microstructures to its fracture properties [0.0]
深層学習フレームワークは, コンクリートメソ構造中のフラクチャーの2次元フルフィールド予測を行うことができる。
メソ構造の平均応力-ひずみ曲線を予測できる畳み込みニューラルネットワークを開発した。
UNetモデリングフレームワークは、スキップ接続を持つエンコーダ-デコーダセクションで構成され、ディープラーニングサロゲートモデルとして使用される。
論文 参考訳(メタデータ) (2024-07-22T14:28:46Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - BART-SIMP: a novel framework for flexible spatial covariate modeling and
prediction using Bayesian additive regression trees [0.0]
本稿では,ガウス過程空間モデルとベイズ加法回帰木(BART)モデルを組み合わせた新しい手法を提案する。
マルコフ連鎖モンテカルロとIntegrated Nested Laplace Approximation (INLA)技術を組み合わせることにより、アプローチの計算負担を低減させる。
本研究では,本手法の性能をシミュレーションを用いて検討し,ケニアの家庭クラスタのサンプルから収集した人文的応答を予測するモデルを用いた。
論文 参考訳(メタデータ) (2023-09-23T05:35:17Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Hierarchical Neural Simulation-Based Inference Over Event Ensembles [0.4515457784397788]
そこで本研究では,予測可能な場合のデータセットワイド確率推定手法を提案する。
確率(比)または後部についてニューラル推定器を構築し,モデルの階層構造を明示的に考慮することで,パラメータの制約が大幅に厳しくなることを示す。
論文 参考訳(メタデータ) (2023-06-21T21:50:42Z) - Variational Inference for Bayesian Neural Networks under Model and
Parameter Uncertainty [12.211659310564425]
BNNにおける構造学習の枠組みとしてモデル不確実性の概念を適用した。
本稿では,限界包摂確率の再パラメータ化による拡張性のある変分推論手法を提案する。
論文 参考訳(メタデータ) (2023-05-01T16:38:17Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z) - Generalising Recursive Neural Models by Tensor Decomposition [12.069862650316262]
テンソル型定式化を利用した構造文脈のモデルアグリゲーションに対する一般的なアプローチを提案する。
パラメータ空間の大きさの指数関数的成長は、タッカー分解に基づく近似によって制御できることを示す。
これにより、隠れたサイズ、計算複雑性、モデル一般化によって制御される符号化の表現性の間のトレードオフを効果的に制御できる。
論文 参考訳(メタデータ) (2020-06-17T17:28:19Z) - Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences [77.68028443709338]
本稿では, Epidemic Type Aftershock Sequence (ETAS) モデルのベイズ的完全定式化を提案する。
地理的領域における主震の発生は不均一な空間的点過程に従うと仮定される。
論文 参考訳(メタデータ) (2020-02-05T10:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。