SEDNet: Shallow Encoder-Decoder Network for Brain Tumor Segmentation
- URL: http://arxiv.org/abs/2401.13403v3
- Date: Tue, 17 Sep 2024 04:23:16 GMT
- Title: SEDNet: Shallow Encoder-Decoder Network for Brain Tumor Segmentation
- Authors: Chollette C. Olisah, Sofie V. Cauter,
- Abstract summary: This paper proposes a tumor segmentation framework including a novel shallow encoder and decoder network named SEDNet.
The highlights of SEDNet include sufficiency in hierarchical convolutional downsampling and selective skip mechanism for cost-efficient and effective brain tumor semantic segmentation.
With about 1.3 million parameters and impressive performance in comparison to the state-of-the-art, SEDNet(X) is shown to be computationally efficient for real-time clinical diagnosis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the advancement in computational modeling towards brain tumor segmentation, of which several models have been developed, it is evident from the computational complexity of existing models that performance and efficiency under clinical application scenarios are still limited. Therefore, this paper proposes a tumor segmentation framework. It includes a novel shallow encoder and decoder network named SEDNet for brain tumor segmentation. The highlights of SEDNet include sufficiency in hierarchical convolutional downsampling and selective skip mechanism for cost-efficient and effective brain tumor semantic segmentation, among other features. The preprocessor and optimization function approaches are devised to minimize the uncertainty in feature learning impacted by nontumor slices or empty masks with corresponding brain slices and address class imbalances as well as boundary irregularities of tumors, respectively. Through experiments, SEDNet achieved impressive dice and Hausdorff scores of 0.9308 %, 0.9451 %, and 0.9026 %, and 0.7040 mm, 1.2866 mm, and 0.7762 mm for the non-enhancing tumor core (NTC), peritumoral edema (ED), and enhancing tumor (ET), respectively. This is one of the few works to report segmentation performance on NTC. Furthermore, through transfer learning with initialized SEDNet pre-trained weights, termed SEDNetX, a performance increase is observed. The dice and Hausdorff scores recorded are 0.9336%, 0.9478%, 0.9061%, 0.6983 mm, 1.2691 mm, and 0.7711 mm for NTC, ED, and ET, respectively. With about 1.3 million parameters and impressive performance in comparison to the state-of-the-art, SEDNet(X) is shown to be computationally efficient for real-time clinical diagnosis. The code is available on Github .
Related papers
- PSO-UNet: Particle Swarm-Optimized U-Net Framework for Precise Multimodal Brain Tumor Segmentation [0.0]
This study introduces PSO-UNet, which integrates Particle Swarm Optimization (PSO) with the U-Net architecture for dynamic hyper parameter optimization.
PSO-UNet substantially enhances segmentation performance, achieving Dice Similarity Coefficients (DSC) of 0.9578 and 0.9523 on the BraTS 2021 and Figshare datasets, respectively.
The method reduces computational complexity significantly, utilizing only 7.8 million parameters and executing in approximately 906 seconds, markedly faster than comparable U-Net-based frameworks.
arXiv Detail & Related papers (2025-03-24T21:14:08Z) - Enhancing Brain Tumor Segmentation Using Channel Attention and Transfer learning [5.062500255359342]
We present an enhanced ResUNet architecture for automatic brain tumor segmentation.
The EfficientNetB0 encoder leverages pre-trained features to improve feature extraction efficiency.
The channel attention mechanism enhances the model's focus on tumor-relevant features.
arXiv Detail & Related papers (2025-01-19T23:58:16Z) - Cancer-Net PCa-Seg: Benchmarking Deep Learning Models for Prostate Cancer Segmentation Using Synthetic Correlated Diffusion Imaging [65.83291923029985]
Prostate cancer (PCa) is the most prevalent cancer among men in the United States, accounting for nearly 300,000 cases, 29% of all diagnoses and 35,000 total deaths in 2024.
Traditional screening methods such as prostate-specific antigen (PSA) testing and magnetic resonance imaging (MRI) have been pivotal in diagnosis, but have faced limitations in specificity and generalizability.
We employ several state-of-the-art deep learning models, including U-Net, SegResNet, Swin UNETR, Attention U-Net, and LightM-UNet, to segment PCa lesions from a 200 CDI$
arXiv Detail & Related papers (2025-01-15T22:23:41Z) - MBDRes-U-Net: Multi-Scale Lightweight Brain Tumor Segmentation Network [0.0]
This study proposes the MBDRes-U-Net model using the three-dimensional (3D) U-Net framework, which integrates multibranch residual blocks and fused attention into the model.
The computational burden of the model is reduced by the branch strategy, which effectively uses the rich local features in multimodal images.
arXiv Detail & Related papers (2024-11-04T09:03:43Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - LATUP-Net: A Lightweight 3D Attention U-Net with Parallel Convolutions for Brain Tumor Segmentation [7.1789008189318455]
LATUP-Net is a lightweight 3D ATtention U-Net with Parallel convolutions.
It is specifically designed to reduce computational requirements significantly while maintaining high segmentation performance.
It achieves promising segmentation performance: the average Dice scores for the whole tumor, tumor core, and enhancing tumor on the BraTS 2020 dataset are 88.41%, 83.82%, and 73.67%, and on the BraTS 2021 dataset, they are 90.29%, 89.54%, and 83.92%, respectively.
arXiv Detail & Related papers (2024-04-09T00:05:45Z) - propnet: Propagating 2D Annotation to 3D Segmentation for Gastric Tumors
on CT Scans [16.135854257728337]
This study introduces a model, utilizing human-guided knowledge and unique modules, to address the challenges of 3D tumor segmentation.
With 98 patient scans for training and 30 for validation, our method achieves a significant agreement with manual annotation (Dice of 0.803) and improves efficiency.
arXiv Detail & Related papers (2023-05-29T03:24:02Z) - Multi-class Brain Tumor Segmentation using Graph Attention Network [3.3635982995145994]
This work introduces an efficient brain tumor summation model by exploiting the advancement in MRI and graph neural networks (GNNs)
The model represents the volumetric MRI as a region adjacency graph (RAG) and learns to identify the type of tumors through a graph attention network (GAT)
arXiv Detail & Related papers (2023-02-11T04:30:40Z) - Hybrid Window Attention Based Transformer Architecture for Brain Tumor
Segmentation [28.650980942429726]
We propose a volumetric vision transformer that follows two windowing strategies in attention for extracting fine features.
We trained and evaluated network architecture on the FeTS Challenge 2022 dataset.
Our performance on the online validation dataset is as follows: Dice Similarity Score of 81.71%, 91.38% and 85.40%.
arXiv Detail & Related papers (2022-09-16T03:55:48Z) - HNF-Netv2 for Brain Tumor Segmentation using multi-modal MR Imaging [86.52489226518955]
We extend our HNF-Net to HNF-Netv2 by adding inter-scale and intra-scale semantic discrimination enhancing blocks.
Our method won the RSNA 2021 Brain Tumor AI Challenge Prize (Segmentation Task)
arXiv Detail & Related papers (2022-02-10T06:34:32Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
Our H2NF-Net uses the single and cascaded HNF-Nets to segment different brain tumor sub-regions.
We trained and evaluated our model on the Multimodal Brain Tumor Challenge (BraTS) 2020 dataset.
Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
arXiv Detail & Related papers (2020-12-30T20:44:55Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
We automate and standardize the task of brain tumor segmentation with U-net like neural networks.
Two independent ensembles of models were trained, and each produced a brain tumor segmentation map.
Our solution achieved a Dice of 0.79, 0.89 and 0.84, as well as Hausdorff 95% of 20.4, 6.7 and 19.5mm on the final test dataset.
arXiv Detail & Related papers (2020-10-30T14:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.