論文の概要: Dynamic Risk Management in Cyber Physical Systems
- arxiv url: http://arxiv.org/abs/2401.13539v1
- Date: Wed, 24 Jan 2024 15:50:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-25 14:21:33.168495
- Title: Dynamic Risk Management in Cyber Physical Systems
- Title(参考訳): サイバー物理システムにおける動的リスクマネジメント
- Authors: Daniel Schneider, Jan Reich, Rasmus Adler and Peter Liggesmeyer
- Abstract要約: 本稿では,協調型自動CPSの安全性保証課題について述べる。
これは、動的リスク管理に関する私たちのビジョンの概要を提供し、すでに存在するビルディングブロックについて説明する。
- 参考スコア(独自算出の注目度): 1.932229781942544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cyber Physical Systems (CPS) enable new kinds of applications as well as
significant improvements of existing ones in numerous different application
domains. A major trait of upcoming CPS is an increasing degree of automation up
to the point of autonomy, as there is a huge potential for economic success as
well as for ecologic and societal improvements. However, to unlock the full
potential of such (cooperative and automated) CPS, we first need to overcome
several significant engineering challenges, where safety assurance is a
particularly important one. Unfortunately, established safety assurance methods
and standards do not live up to this task, as they have been designed with
closed and less complex systems in mind. This paper structures safety assurance
challenges of cooperative automated CPS, provides an overview on our vision of
dynamic risk management and describes already existing building blocks.
- Abstract(参考訳): サイバー物理システム(CPS)は、新しい種類のアプリケーションと、多数の異なるアプリケーションドメインにおける既存のアプリケーションを大幅に改善する。
今後のCPSの大きな特徴は、経済の成功や生態学的、社会的な改善の可能性を秘めているため、自律的な点まで自動化の度合いが高まることである。
しかし、このような(協力的かつ自動化された)CPSの可能性を最大限に活用するには、安全保証が特に重要であるいくつかの重要なエンジニアリング課題を克服する必要がある。
残念ながら、確立された安全保証手法や標準は、閉じたより複雑なシステムを念頭に置いて設計されているため、このタスクには達していない。
本稿では,協調型自動CPSの安全性保証課題の構築,動的リスク管理の展望の概要,既存のビルディングブロックについて述べる。
関連論文リスト
- EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Cross-Modality Safety Alignment [73.8765529028288]
我々は、モダリティ間の安全アライメントを評価するために、セーフインプットとアンセーフアウトプット(SIUO)と呼ばれる新しい安全アライメントの課題を導入する。
この問題を実証的に調査するため,我々はSIUOを作成した。SIUOは,自己修復,違法行為,プライバシー侵害など,9つの重要な安全領域を含むクロスモダリティベンチマークである。
以上の結果から, クローズドおよびオープンソース両方のLVLMの安全性上の重大な脆弱性が明らかとなり, 複雑で現実的なシナリオを確実に解釈し, 応答する上で, 現行モデルが不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T16:14:15Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - ACCESS: Assurance Case Centric Engineering of Safety-critical Systems [9.388301205192082]
保証ケースは、安全性やセキュリティなどの重要なシステム特性について、コミュニケーションし、信頼性を評価するために使用されます。
近年,システム保証活動の効率化と品質向上のために,モデルに基づくシステム保証アプローチが普及している。
モデルに基づくシステム保証ケースが異種工学的アーティファクトにどのように辿り着くかを示す。
論文 参考訳(メタデータ) (2024-03-22T14:29:50Z) - I came, I saw, I certified: some perspectives on the safety assurance of
cyber-physical systems [5.9395940943056384]
サイバー物理システムの実行が失敗すると、生命の喪失、重傷、大規模な環境被害、資産破壊、そして大きな経済損失が生じる。
しばしば、規制機関がそのような制度を認定することを正当化し許すために、説得力のある保証ケースを開発することが義務付けられている。
我々は、保証イネーブラーのような課題を探求し、それらに取り組むための潜在的な方向性を概説する。
論文 参考訳(メタデータ) (2024-01-30T00:06:16Z) - Future Vision of Dynamic Certification Schemes for Autonomous Systems [3.151005833357807]
私たちは、重大な安全リスクをもたらす可能性のある、現在の認定戦略に関するいくつかの問題を特定します。
我々は、絶えず進化するシステムにおけるソフトウェア変更の不適切な反映と、システムの協力に対するサポートの欠如を強調します。
その他の欠点としては、認定の焦点が狭く、自律的なソフトウェアシステムの倫理的振る舞いを無視することが挙げられる。
論文 参考訳(メタデータ) (2023-08-20T19:06:57Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Collaborative AI Needs Stronger Assurances Driven by Risks [5.657409854809804]
共同AIシステム(CAIS)は、共通の目標を達成するために、共有空間で人間と協力することを目的としている。
要件やドメイン固有の標準、規制の遵守を強く保証したシステムを構築することが、最も重要なのです。
論文 参考訳(メタデータ) (2021-12-01T15:24:21Z) - Constraints Satisfiability Driven Reinforcement Learning for Autonomous
Cyber Defense [7.321728608775741]
強化学習(RL)の防御政策の最適化と検証を目的とした新しいハイブリッド自律エージェントアーキテクチャを紹介します。
我々は、安全かつ効果的な行動に向けてRL決定を操るために、制約検証(SMT(Satisfiability modulo theory))を用いる。
シミュレーションCPS環境における提案手法の評価は,エージェントが最適方針を迅速に学習し,99%のケースで多種多様な攻撃戦略を破ることを示す。
論文 参考訳(メタデータ) (2021-04-19T01:08:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。