TIFu: Tri-directional Implicit Function for High-Fidelity 3D Character
Reconstruction
- URL: http://arxiv.org/abs/2401.14565v1
- Date: Thu, 25 Jan 2024 23:30:51 GMT
- Title: TIFu: Tri-directional Implicit Function for High-Fidelity 3D Character
Reconstruction
- Authors: Byoungsung Lim and Seong-Whan Lee
- Abstract summary: Tri-directional Implicit Function (TIFu) is a vector-level representation that increases global 3D consistencies while significantly reducing memory usage.
We introduce a new algorithm in 3D reconstruction at an arbitrary resolution by aggregating vectors along three axes.
Our approach achieves state-of-the-art performances in both our self-curated character dataset and the benchmark 3D human dataset.
- Score: 35.299242563565315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in implicit function-based approaches have shown promising
results in 3D human reconstruction from a single RGB image. However, these
methods are not sufficient to extend to more general cases, often generating
dragged or disconnected body parts, particularly for animated characters. We
argue that these limitations stem from the use of the existing point-level 3D
shape representation, which lacks holistic 3D context understanding.
Voxel-based reconstruction methods are more suitable for capturing the entire
3D space at once, however, these methods are not practical for high-resolution
reconstructions due to their excessive memory usage. To address these
challenges, we introduce Tri-directional Implicit Function (TIFu), which is a
vector-level representation that increases global 3D consistencies while
significantly reducing memory usage compared to voxel representations. We also
introduce a new algorithm in 3D reconstruction at an arbitrary resolution by
aggregating vectors along three orthogonal axes, resolving inherent problems
with regressing fixed dimension of vectors. Our approach achieves
state-of-the-art performances in both our self-curated character dataset and
the benchmark 3D human dataset. We provide both quantitative and qualitative
analyses to support our findings.
Related papers
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - Optimizing 3D Geometry Reconstruction from Implicit Neural Representations [2.3940819037450987]
Implicit neural representations have emerged as a powerful tool in learning 3D geometry.
We present a novel approach that both reduces computational expenses and enhances the capture of fine details.
arXiv Detail & Related papers (2024-10-16T16:36:23Z) - DiffTF++: 3D-aware Diffusion Transformer for Large-Vocabulary 3D Generation [53.20147419879056]
We introduce a diffusion-based feed-forward framework to address challenges with a single model.
Building upon our 3D-aware Diffusion model with TransFormer, we propose a stronger version for 3D generation, i.e., DiffTF++.
Experiments on ShapeNet and OmniObject3D convincingly demonstrate the effectiveness of our proposed modules.
arXiv Detail & Related papers (2024-05-13T17:59:51Z) - Implicit Shape and Appearance Priors for Few-Shot Full Head
Reconstruction [17.254539604491303]
In this paper, we address the problem of few-shot full 3D head reconstruction.
We accomplish this by incorporating a probabilistic shape and appearance prior into coordinate-based representations.
We extend the H3DS dataset, which now comprises 60 high-resolution 3D full head scans and their corresponding posed images and masks.
arXiv Detail & Related papers (2023-10-12T07:35:30Z) - SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit
Neural Representations [37.733802382489515]
This paper addresses the problems of achieving large-scale 3D reconstructions with implicit representations using 3D LiDAR measurements.
We learn and store implicit features through an octree-based hierarchical structure, which is sparse and sparse.
Our experiments show that our 3D reconstructions are more accurate, complete, and memory-efficient than current state-of-the-art 3D mapping methods.
arXiv Detail & Related papers (2022-10-05T14:38:49Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - Convolutional Occupancy Networks [88.48287716452002]
We propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes.
By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space.
We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.
arXiv Detail & Related papers (2020-03-10T10:17:07Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.